Leonarda Rastelli
 YITP, Stony Brook

AdSMET in the Veneziano Limit

Lisbon, June 302009

arxiv: 0907..., 0908... with A. Gadde and E. Pomoni

11 years of AdS/CFT

Paradigm: $\mathcal{N}=4 \mathrm{SYM} \leftrightarrow \mathrm{IIB}$ on $A d S_{5} \times S^{5} \quad$ Maldacena
Extremely rich example

All other gravity duals of 4 d gauge theories are rather close cousins of this case: motivated from D3 branes at local singularities in critical string theory

- Adjoint or bifundamental matter (quivers).

Fundamental flavors can be added in probe approximation $N_{f} \ll N_{c}$

- Susy can be broken but there are always remnants of the "extra" matter
- Anomaly coefficients $a=c$ at large N_{c}. "No-go theorem" (?)

Bulk Weyl anomaly calculation always gives $a=c$ at leading order Henningson Skenderis

- Dual geometries are 10d
- Radius of curvature R related to coupling λ (a modulus), $R \sim \lambda^{1 / 4}$, can be taken arbitrarily large (but $\lambda \rightarrow 0$ not always an option)
't Hooft gave a very general heuristic argument for
"Large N field theory $=$ closed string theory with $g_{s} \sim 1 / N$ "
So far we understand "well" only a limited class of dualities,
for the theories "in the universality class" of $\mathcal{N}=4 \mathrm{SYM}$
\exists many string constructions of field theories with genuinely fewer d.o.f. in the IR (say pure $S U(N)$, or $\mathcal{N}=1 \mathrm{SYM}$).

However if one takes a limit that decouples the unwanted UV d.o.f, the dual string is described (at best) by a strongly curved sigma model.

Hopefully this is just a technical problem, but progress has so far been limited.

Attack "next simplest case"

Ideal case study:
$\mathcal{N}=2 \mathrm{SYM}$ with $N_{f}=2 N_{c}$ fundamental hypermultiplets $" \mathcal{N}=2$ SCQCD"

Large N limit à la Veneziano: $N_{c} \sim N_{f}$

- What (if any) is the dual string theory?
$\lambda=g_{Y M}^{2} N_{c}$ is an exactly marginal coupling, just as in $\mathcal{N}=4$ SYM.
For large λ, a weakly curved gravity description?

String theory on... $A d S_{5} \times \mathcal{X}$?
Long-standing open problem!

The Veneziano limit and dual strings

Focus on theories with large number of fundamental flavors, $N_{f} \sim N_{c}$.

Veneziano limit: $N_{c} \rightarrow \infty, N_{f} \rightarrow \infty$ with N_{f} / N_{c} fixed, $\lambda=g_{Y M}^{2} N_{c}$ fix
Important applications to AdS/QCD.

Holography in the Veneziano limit?
't Hooft argument for existence of dual closed string theory at large N can be adapted to the Veneziano limit.

Schematically: adjoint fields $\phi^{a}{ }_{b} \quad a=1, \ldots, N_{c}$ color indes
fundamental fields $q^{a}{ }_{i} \quad i=1, \ldots, N_{f}$ flavor index

Two kinds of double lines:

Adjoint lines
$\langle\phi \phi\rangle$

Quark lines
$\langle q q\rangle$

Quark lines not suppressed.

Vacuum Feynman diagrams \rightarrow bi-colored Riemann surfaces $\sim N^{2-2 g}$ suggesting as usual a dual closed string theory with $g_{s}=1 / N$.

Main novelty: glueball operators $\operatorname{Tr}(\phi \ldots \phi)$ (color-trace)
mix at leading order with
flavor-singlet mesons $\quad \bar{q}^{i} \phi \ldots \phi q_{i}$

Define flavor-contracted combination $\mathcal{M}^{a}{ }_{b} \equiv q^{a}{ }_{i} q^{i}{ }_{b}$

In flavor-singlet sector, basic building blocks are the single-trace operators

$$
\operatorname{Tr}\left(\phi^{k_{1}} \mathcal{M}^{l_{1}} \phi^{k_{2}} \mathcal{M}^{l_{2}} \ldots\right)
$$

Usual large N factorization arguments apply.

- In the (conjectural) dual string theory, large meson/glueball mixing interpreted as large backreaction of the "flavor" branes (need to resum open string perturbation theory).

Plan of attack

From the "bottom-up":

- Perturbative anomalous dimensions:
integrable spin-chain? asymptotic Bethe ansatz? emergent geometry?
- Spectrum of protected single-trace operators: KK spectrum?
-...

From the "top-down":

- Engineer it with branes in string theory

In both approaches, useful to consider more general family of superconformal theories, interpolating between a \mathbb{Z}_{2} orbifold of $\mathcal{N}=4$ and $\mathcal{N}=2$ SCQCD

The Field Theory

$\mathcal{N}=2$ hypermultiplet $\quad q \overline{\tilde{\psi}}^{\dot{\alpha}} \tilde{q}^{*}$

$$
\mathcal{N}=2 \text { vector multiplet } \begin{array}{lll}
& \lambda_{\alpha}^{1} & A_{\mu} \\
& & \lambda_{\alpha}^{2}
\end{array}
$$

	$S U\left(N_{c}\right)$	$U\left(N_{f}\right)$	$S U(2)_{R}$	$U(1)_{r}$
$\mathcal{Q}_{\alpha}^{\mathcal{I}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$+1 / 2$
$\mathcal{S}_{\mathcal{I} \alpha}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$-1 / 2$
A_{μ}	Adj	$\mathbf{1}$	$\mathbf{1}$	0
ϕ	Adj	$\mathbf{1}$	$\mathbf{1}$	-1
$\lambda_{\alpha}^{\mathcal{I}}$	Adj	$\mathbf{1}$	$\mathbf{2}$	$-1 / 2$
$Q_{\mathcal{I}}$	\square	\square	$\mathbf{2}$	0
ψ_{α}	\square	\square	$\mathbf{1}$	$+1 / 2$
$\tilde{\psi}_{\alpha}$	$\bar{\square}$	$\bar{\square}$	$\mathbf{1}$	$+1 / 2$
$\mathcal{M}_{\mathbf{1}}$	Adj $+\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
$\mathcal{M}_{\mathbf{3}}$	$A d j+\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0

$$
S_{V}=-\int d^{4} x \operatorname{Tr}\left(\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+i \bar{\lambda}_{\mathcal{I}} \bar{\sigma}^{\mu} D_{\mu} \lambda^{\mathcal{I}}+\left(D^{\mu} \phi\right)\left(D_{\mu} \phi\right)^{\dagger}+\sqrt{2} i g \epsilon_{\mathcal{I} \mathcal{J}} \lambda^{\mathcal{I}} \lambda^{\mathcal{J}} \phi^{\dagger}-\sqrt{2} i g \epsilon^{\mathcal{J} \mathcal{J}} \bar{\lambda}_{\mathcal{I}} \bar{\lambda}_{\mathcal{J}} \phi+\frac{g^{2}}{2}\left[\phi, \phi^{\dagger}\right]\right)
$$

$$
S_{H}=-\int d^{4} x\left(\left(D^{\mu} \bar{Q}^{\mathcal{I}}\right)\left(D_{\mu} Q_{\mathcal{I}}\right)+i \bar{\psi} \bar{\sigma}^{\mu} D_{\mu} \psi+i \tilde{\psi} \bar{\sigma}^{\mu} D_{\mu} \overline{\tilde{\psi}}+\sqrt{2} i g \epsilon^{\mathcal{I}} \bar{\psi} \bar{\lambda}_{\mathcal{I}} Q_{\mathcal{J}}-\sqrt{2} i g \epsilon_{\mathcal{I} \mathcal{J}} \bar{Q}^{\mathcal{I}} \lambda^{\mathcal{J}} \psi+\sqrt{2} i g \tilde{\psi} \lambda^{I} Q_{\mathcal{I}}-\sqrt{2} i g \bar{Q}^{\mathcal{I}} \bar{\lambda}_{\mathcal{I}} \overline{\tilde{\psi}}\right.
$$

$$
\left.-2 g^{2} \bar{Q}_{\mathcal{I}} \phi^{\dagger} \phi Q^{I}+\sqrt{2} i g \tilde{\psi} \phi \psi-\sqrt{2} i g \bar{\psi} \bar{\phi} \overline{\tilde{\psi}}+g^{2} V_{Q}\right)
$$

$S U(2)_{R}$ doublet $Q_{\mathcal{I}}=\left(q, \tilde{q}^{*}\right)$

Flavor-contracted mesonic operator:

$$
\begin{aligned}
& \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{J} b}{ }^{b}=Q_{\mathcal{I}}{ }_{i}{ }_{i} \bar{Q}^{\mathcal{J}}{ }_{b}{ }^{i} \\
& \mathcal{M}_{\mathbf{1}} \equiv \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{I}} \text { and } \mathcal{M}_{\mathbf{3}} \equiv \mathcal{M}_{\mathcal{K}}^{\mathcal{J}}-\frac{1}{2} \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{I}} \delta_{\mathcal{K}}^{\mathcal{J}}
\end{aligned}
$$

The squark potential is a function only of the triplet,

$$
V_{Q}=\operatorname{Tr}\left(\mathcal{M}_{3} \mathcal{M}_{3}\right)-\frac{1}{N_{c}} \operatorname{Tr}\left(\mathcal{M}_{3}\right) \operatorname{Tr}\left(\mathcal{M}_{3}\right)
$$

	$S U\left(N_{c}\right)$	$U\left(N_{f}\right)$	$S U(2)_{R}$	$U(1)_{r}$
$\mathcal{Q}_{\alpha}^{\mathcal{I}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$+1 / 2$
$\mathcal{S}_{\mathcal{I} \alpha}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$-1 / 2$
A_{μ}	Adj	$\mathbf{1}$	$\mathbf{1}$	0
ϕ	Adj	$\mathbf{1}$	$\mathbf{1}$	-1
$\lambda_{\alpha}^{\mathcal{I}}$	Adj	$\mathbf{1}$	$\mathbf{2}$	$-1 / 2$
$Q_{\mathcal{I}}$	\square	\square	$\mathbf{2}$	0
ψ_{α}	\square	\square	$\mathbf{1}$	$+1 / 2$
$\tilde{\psi}_{\alpha}$	$\bar{\square}$	\square	$\mathbf{1}$	$+1 / 2$
$\mathcal{M}_{\mathbf{1}}$	Adj $+\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
$\mathcal{M}_{\mathbf{3}}$	Adj $+\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0

The One-Loop Hamiltonian in the Scalar Sector

We have evaluated the complete one-loop hamiltonian acting on single-trace operators made of scalars,

$$
\operatorname{Tr}\left[\phi^{k} \bar{\phi}^{\ell} \mathcal{M}_{1}^{m} \mathcal{M}_{3}^{n}\right]
$$

(arbitrary permutations thereof)

Crucial observation: large N ensures locality of the hamiltonian.
Nearest neighbor at one-loop, next-to nearest at two loops, ...
(Still true in the Veneziano limit).

Wave function renormalization diagran

Gluon exchange diagrams

$\phi \phi \rightarrow \phi \phi$

$\phi Q \rightarrow \phi Q$

$Q Q \rightarrow Q Q$

Quartic diagrams

$\phi \phi \rightarrow \phi \phi$

$\phi Q \rightarrow \phi Q$

$Q Q \rightarrow Q Q$

$Q Q \rightarrow \phi \phi$

Each site of the chain occupied by 6 d vector space spanned by $\phi, \bar{\phi}, Q_{\mathcal{I}}, \bar{Q}^{\mathcal{J}}$.

Nearest neighbour Hamiltonian $H_{l, l+1}$ acting on $V_{l} \otimes V_{l+1}$

$$
\phi_{\mathfrak{m}}=(\phi, \bar{\phi})
$$

$\operatorname{SU}(2)_{R}$ indices $\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L} \cdots=1,2 \quad U(1)_{r}$ indices $\mathfrak{m}, \mathfrak{n} \cdots=1,2$

$$
g_{\mathfrak{m} \mathfrak{n}}=g^{\mathfrak{m n}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\Gamma^{(1)} \equiv g^{2} H, \quad g^{2} \equiv \frac{\lambda}{8 \pi^{2}}, \quad \lambda \equiv g_{Y M}^{2} N_{c}
$$

Elementary operators acting on each site of the chain, transforming "incoming" $\mathcal{O}^{\mathcal{I}} \mathcal{J}$ to "outgoing" $\mathcal{O}^{\mathcal{L}} \mathcal{K}$:

Trace operator

$$
\mathbb{K}_{\mathcal{I K}}^{\mathcal{J} \mathcal{L}}=\delta_{\mathcal{I}}^{\mathcal{J}} \delta_{\mathcal{K}}^{\mathcal{L}}
$$

Permutation operator $\quad \mathbb{P}_{\mathcal{I K}}^{\mathcal{J}}=\delta_{\mathcal{I K}} \delta^{\mathcal{J} \mathcal{L}}$

Identity operator

$$
\mathbb{I}_{\mathcal{I K}}^{\mathcal{J}}=\delta_{\mathcal{I}}^{\mathcal{I}} \delta_{\mathcal{K}}^{\mathcal{J}}
$$

$$
\left.H_{k, k+1}=\begin{array}{c}
\phi \phi \\
\bar{Q} Q \\
\phi \phi \\
Q \bar{Q} \\
\bar{Q} \phi
\end{array} \begin{array}{cccc}
\phi \bar{Q} & \bar{Q} Q & Q \phi \\
2 \mathbb{I}+\mathbb{K}-2 \mathbb{P} & \sqrt{\frac{N_{f}}{N}} \mathbb{K} & 0 & 0 \\
\sqrt{\frac{N_{f}}{N}} \mathbb{K} & (2 \mathbb{I}-\mathbb{K}) \frac{N_{f}}{N_{c}} & 0 & 0 \\
0 & 0 & 2 \mathbb{K} & 0 \\
0 & 0 & 0 & 2 \mathbb{I}
\end{array}\right)
$$

This spin-chain hamiltonian appears to be new.

Vacuum $\operatorname{Tr}\left(\phi^{\ell}\right)$.
Study excitations above the vacuum in the language of the asymptotic Bethe ansatz.

In the one-impurity sector:

$$
\begin{aligned}
& \bar{\phi}(p) \equiv \sum_{x} \bar{\phi}(x) e^{i p x}, \quad \mathcal{M}_{\mathbf{1}}(p) \equiv \sum_{x} \mathcal{M}_{\mathbf{1}}(x) e^{i p x} \\
& H\binom{\bar{\phi}(p)}{\mathcal{M}_{\mathbf{1}}}=\left(\begin{array}{cc}
6-e^{i p}-e^{-i p} & \left(1+e^{-i p}\right) \sqrt{\frac{2 N_{f}}{N_{c}}} \\
\left(1+e^{i p}\right) \sqrt{\frac{2 N_{f}}{N_{c}}} & 4
\end{array}\right)\binom{\bar{\phi}(p)}{\mathcal{M}_{\mathbf{1}}}
\end{aligned}
$$

For $N_{f}=2 N_{c}$ one of the two excitations is gapless
The chain is gapless for $N_{f}=2 N_{c}$!
The $N_{f}=0$ case has been considered before. Di vecchia Tanzimi
Light magnons correspond to the propagation of $T \equiv \phi \bar{\phi}-\mathcal{M}_{1}$ along the chain.
For $N_{f}=2 N_{c}$, zero-momentum state $\operatorname{Tr} T \phi^{\ell}$ has zero anomalous dimension.

Protected Operators

From explicit one-loop calculation in the scalar sector, the single-trace operators with $\gamma=0$ are

- $\operatorname{Tr} \mathcal{M}_{3}$
- $\operatorname{Tr} \phi^{\ell}$, with $\ell \geq 2$.
- $\operatorname{Tr} T \phi^{\ell}$, with $\ell \geq 0$, where $T \equiv \bar{\phi} \phi-\mathcal{M}_{1}$.

Scalar Multiplets	SCQCD operators	Protected
$\mathcal{B}_{R, r(0,0)}$	$\operatorname{Tr}\left[\bar{\phi}^{r} \mathcal{M}_{3}^{R}\right]$	
$\mathcal{E}_{r(0,0)}$	$\operatorname{Tr}\left[\bar{\phi}^{r}\right]$	\checkmark
\mathcal{B}_{R}	$\operatorname{Tr}\left[\mathcal{M}_{3}^{R}\right]$	\checkmark for $R=1$
$\mathcal{C}_{R, r(0,0)}$	$\operatorname{Tr}\left[T \mathcal{M}_{3}^{R} \bar{\phi}^{r}\right]$	
$\mathcal{C}_{0, r(0,0)}$	$\operatorname{Tr}\left[T \bar{\phi}^{r}\right]$	\checkmark
$\mathcal{\mathcal { C }}_{R(0,0)}$	$\operatorname{Tr}\left[T \mathcal{M}_{3}^{R}\right]$	
$\hat{\mathcal{C}}_{0(0,0)}$	$\operatorname{Tr}[T]$	\checkmark
$\mathcal{D}_{R(0,0)}$	$\operatorname{Tr}\left[\mathcal{M}_{3}^{R} \bar{\phi}\right]$	

Note that $\operatorname{Tr} T(\Delta=2)$ is the lowest weight state of the $\mathcal{N}=2$ stress-tensor multiplet.
These operators are superconformal primaries.
In the free theory they are the lowest weight states of (semi-)short multiplets.
In the interacting theory (semi-)short multiplets can a priori combine into long multiplets with $\gamma \neq 0$.

Protection of $\operatorname{Tr} \phi^{\ell}$ easily proved to all orders from superconformal representation theory: such multiplets never appear in decomposition of long multiplets. Dolan-osborn

Protection of $\operatorname{Tr} \mathcal{M}_{3}$ and of $\operatorname{Tr} T \phi^{\ell}$ more subtle,
we prove it by computing (essentially) a superconformal index.
Most easily done in interpolating family of SCFTs (coming up soon).
(Situations more intricate than in $\mathcal{N}=4$ SYM where the only single-trace protected multiplets are the $1 / 2$ BPS multiplets.)

There are no other single-trace protected multiplets.

6d geometry??

- $\operatorname{Tr} \mathcal{M}_{3}$
- $\operatorname{Tr} \phi^{\ell}$, with $\ell \geq 2$.
- $\operatorname{Tr} T \phi^{\ell}$, with $\ell \geq 0$, where $T \equiv \bar{\phi} \phi-\mathcal{M}_{1}$.

Protected operators strongly suggestive of a supergravity spectrum from Kaluza-Klein on S^{1}

Remarkably, $\left\{\operatorname{Tr} \mathcal{M}_{3}, \operatorname{Tr} \phi^{\ell}\right\}$ can be exactly matched to
KK reduction of $6 \mathrm{~d}(4,0)$ tensor multiplet on $A d S_{5} \times S^{1}$!

However there is no simple 6 d origins for the $\left\{\operatorname{Tr} T \phi^{\ell}\right\}$ states.
KK reduction on S^{1} of $6 \mathrm{~d}(4,0)$ supergravity multiplet can yield only a subset of $\left\{\operatorname{Tr} T \phi^{\ell}\right\}$.
(At any rate a $6 \mathrm{~d}(4,0)$ sugra theory would be problematic for anomaly cancellation).

KK reduction of $(4,0)$ tensor multiplet on $A d S_{5} \times S^{1}$

Field Theory					Gravity			
Operator	k	$U(1)_{r}$	Δ	Mass	Field	KK		
$\operatorname{Tr}\left[\lambda \lambda \bar{\phi}^{k-1}\right]$	$k \geq 1$	k	$2+k$	$k^{2}-4$	ξ^{i}	k		
$\operatorname{Tr}\left[F^{2} \bar{\phi}^{k}\right]$	$k \geq 0$	k	$4+k$	$k^{2}+4 k$	ξ	$k+1$		
$\operatorname{Tr}\left[\bar{\phi}^{k}\right]$	$k \geq 2$	k	k	$k^{2}-4 k$	$\bar{\xi}$	$k-1$		
$\operatorname{Tr}\left[F \bar{\phi}^{k}\right]$	$k \geq 1$	k	$2+k$	k^{2}	$B_{\hat{m} \hat{n}}^{-}$	k		

(From Gukov with minor modification for zero modes).
Table shows correspondence of positive $(k \geq 1)$ KK modes of tensor multiplet with field theory operators: exact matching with $\operatorname{Tr} \bar{\phi}^{\ell}$ multiplets, with $\ell=k+1$.

Zero-modes on S^{1} match with $\operatorname{Tr} \mathcal{M}_{3}$ multiplet.

$\operatorname{Tr} \phi^{\ell}$ multiplet

$$
\begin{aligned}
& \Delta \\
& \text { l } \quad 0_{(0,0)} \\
& \begin{array}{llll}
\ell+1 / 2 & \frac{1}{2}\left(0, \pm \frac{1}{2}\right) & & \\
\ell+1 & & 0_{(0, \pm 1)}, 1_{(0,0)} & \\
\ell+3 / 2 & & & \frac{1}{2}\left(0, \pm \frac{1}{2}\right)
\end{array} \\
& \ell+2 \quad 0_{(0,0)} \\
& r \quad-\ell \quad-\ell+1 / 2 \quad-\ell+1 \quad-\ell+3 / 2 \quad-\ell+2
\end{aligned}
$$

\mathcal{M}_{3} multiplet

$\operatorname{Tr} T \phi^{\ell}$ multiplet

An interpolating family of super CFTs

$\mathcal{N}=2$ SCQCD can be viewed as a limit of a family of $\mathcal{N}=2$ SCFTs.

In opposite limit the family reduces to a well-known \mathbb{Z}_{2} orbifold of $\mathcal{N}=4 \mathrm{SYM}$

Start with $\mathcal{N}=4$ SYM: $X_{A B}, \lambda_{\alpha}^{A}, A_{\mu}$
$A, B S U(4)_{R}$ indices

$$
X_{A B}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc|cc}
0 & X_{4}+i X_{5} & X_{7}+i X_{6} & X_{8}+i X_{9} \\
-X_{4}-i X_{5} & 0 & X_{8}-i X_{9} & -X_{7}+i X_{6} \\
\hline-X_{7}-i X_{6}-X_{8}+i X_{9} & 0 & X_{4}-i X_{5} \\
-X_{8}-i X_{9} & X_{7}-i X_{6} & -X_{4}+i X_{5} & 0
\end{array}\right)
$$

Pick $S U(2)_{L} \times S U(2)_{R} \times U(1)_{r}$ subgroup of $S U(4)_{R}$

$$
\mathcal{Z} \equiv \frac{X_{4}+i X_{5}}{\sqrt{2}}, \quad \mathcal{X}_{\mathcal{I} \hat{\mathcal{I}}} \equiv \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
X_{7}+i X_{6} & X_{8}+i X_{9} \\
X_{8}-i X_{9} & -X_{7}+i X_{6}
\end{array}\right)
$$

$S U(2)_{L} \times S U(2)_{R} \cong S O(4)$ are 6789 rotations,
$\mathcal{I}, \mathcal{J}= \pm S U(2)_{R}$ indices, $\hat{\mathcal{I}}, \hat{\mathcal{J}}=\hat{ \pm} S U(2)_{L}$ indices

$$
U(1)_{R} \cong S O(2) 45 \text { rotations }
$$

In R-space, orbifold by $\mathbb{Z}_{2} \subset S U(2)_{L}, \mathbb{Z}_{2}=\left\{ \pm \mathbb{I}_{2 \times 2}\right\}$

$$
\left(X_{6}, X_{7}, X_{8}, X_{9}\right) \rightarrow \pm\left(X_{6}, X_{7}, X_{8}, X_{9}\right)
$$

In color space, start with $S U\left(2 N_{c}\right)$ and declare non-trivial element of orbifold

$$
\tau \equiv\left(\begin{array}{cc}
\mathbb{I}_{N_{c} \times N_{c}} & 0 \\
0 & -\mathbb{I}_{N_{c} \times N_{c}}
\end{array}\right)
$$

$$
A_{\mu} \rightarrow \tau A_{\mu} \tau, \quad Z_{\mathcal{I J}} \rightarrow \tau Z_{\mathcal{I J}} \tau, \quad \lambda_{\mathcal{I}} \rightarrow \tau \lambda_{\mathcal{I}} \tau, \quad \mathcal{X}_{\mathcal{I} \hat{\mathcal{I}}} \rightarrow-\tau \mathcal{X}_{\mathcal{I} \hat{\mathcal{I}}} \tau, \quad \lambda_{\hat{\mathcal{I}}} \rightarrow-\tau \lambda_{\hat{\mathcal{I}}} \tau
$$

	$S U\left(N_{c}\right)_{1}$	$S U\left(N_{c}\right)_{2}$	$S U(2)_{R}$	$S U(2)_{L}$	$U(1)_{R}$
$\mathcal{Q}_{\alpha}^{\mathcal{I}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$+1 / 2$
$\mathcal{S}_{\mathcal{I} \alpha}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$-1 / 2$
A_{μ}	Adj	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
\check{A}_{μ}	$\mathbf{1}$	Adj	$\mathbf{1}$	$\mathbf{1}$	0
ϕ	Adj	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	-1
$\check{\phi}$	$\mathbf{1}$	Adj	$\mathbf{1}$	$\mathbf{1}$	-1
$\lambda^{\mathcal{I}}$	Adj	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$-1 / 2$
$\check{\lambda}^{\mathcal{I}}$	$\mathbf{1}$	Adj	$\mathbf{2}$	$\mathbf{1}$	$-1 / 2$
$Q_{\mathcal{I} \hat{\mathcal{I}}}$	\square	\square	$\mathbf{2}$	$\mathbf{2}$	0
$\psi_{\hat{\mathcal{I}}}$	\square	\square	$\mathbf{1}$	$\mathbf{2}$	$+1 / 2$
$\tilde{\psi}_{\hat{\mathcal{I}}}$	\square	\square	$\mathbf{1}$	$\mathbf{2}$	$+1 / 2$

$$
\begin{aligned}
& \mathcal{L}_{Y \text { ukawa }}\left(g_{Y M}, \check{g}_{Y M}\right)=i \sqrt{2} \operatorname{Tr}\left[-g_{Y M} \epsilon^{\mathcal{I} \mathcal{J}} \bar{\lambda}_{\mathcal{I}} \bar{\lambda}_{\mathcal{J}} \phi-\check{g}_{Y M} \epsilon^{\mathcal{I} \mathcal{J}} \overline{\grave{\lambda}}_{\mathcal{I}} \overline{\grave{\lambda}}_{\mathcal{J}} \check{\phi}\right. \\
& +g_{Y M} \epsilon^{\hat{\mathcal{I}} \hat{\mathcal{J}}} \tilde{\psi}_{\hat{\mathcal{I}}} \phi \psi_{\hat{\mathcal{J}}}+\check{g}_{Y M} \epsilon^{\hat{\mathcal{I}} \hat{\mathcal{J}}} \psi_{\hat{\mathcal{J}}} \tilde{\phi}_{\hat{\mathcal{I}}} \\
& +g_{Y M} \epsilon^{\hat{\mathcal{I}}} \hat{\mathcal{J}} \tilde{\psi}_{\hat{\mathcal{J}}} \lambda^{\mathcal{I}} Q_{\mathcal{I} \hat{\mathcal{I}}}+\check{g}_{Y M} \epsilon^{\hat{\mathcal{I}} \hat{\mathcal{J}}} Q_{\mathcal{I} \hat{\mathcal{I}}} \check{\lambda}^{\mathcal{I}} \tilde{\psi}_{\hat{\mathcal{J}}} \\
& \left.-g_{Y M} \epsilon_{\mathcal{I} \mathcal{J}} \bar{Q}^{\hat{\mathcal{I}} \mathcal{I}} \lambda^{\mathcal{J}} \psi_{\hat{\mathcal{J}}}-\check{g}_{Y M} \epsilon_{\mathcal{I} \mathcal{J}} \psi_{\hat{\mathcal{J}}} \check{\lambda}^{\mathcal{I}} \bar{Q}^{\hat{\mathcal{J}} \mathcal{J}}\right]+ \text { h.c. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{V}\left(g_{Y M}, \check{g}_{Y M}\right)=g_{Y M}^{2} \operatorname{Tr}\left[\frac{1}{2}[\bar{\phi}, \phi]^{2}+\mathcal{M}_{\mathcal{I}}^{\mathcal{I}}(\phi \bar{\phi}+\bar{\phi} \phi)+\mathcal{M}_{\mathcal{I}}^{\mathcal{J}} \mathcal{M}_{\mathcal{J}}^{\mathcal{I}}-\frac{1}{2} \mathcal{M}_{\mathcal{I}}^{\mathcal{I}} \mathcal{M}_{\mathcal{J}}^{\mathcal{J}}\right. \\
& +\check{g}_{Y M}^{2} \operatorname{Tr}\left[\frac{1}{2}\left[\check{\phi}, \check{\phi}^{2}\right]^{2}+\check{\mathcal{M}}^{\mathcal{I}}(\check{\phi} \check{\phi} \bar{\phi}+\bar{\phi} \check{\phi})+\check{\mathcal{M}}^{\mathcal{I}}{ }_{\mathcal{J}} \check{\mathcal{M}}_{\mathcal{I}}^{\mathcal{J}}-\frac{1}{2} \check{\mathcal{M}}^{\mathcal{I}}{ }_{\mathcal{I}} \check{\mathcal{M}}^{\mathcal{U}}\right. \\
& +g_{Y M} \check{g}_{Y M} \operatorname{Tr}\left[-2 Q_{\mathcal{I} \hat{\mathcal{I}}} \check{\phi} \bar{Q}^{\hat{\mathcal{I}} \mathcal{I}} \bar{\phi}+\text { h.c. }\right]-\frac{1}{N_{c}} \mathcal{V}_{\text {d.t. }},
\end{aligned}
$$

Two gauge-couplings $g_{Y M}$ and $\check{g}_{Y M}$ can be independently varied
while preserving $\mathcal{N}=2$ superconformal invariance

For $\check{g}_{Y M} \rightarrow 0$, recover $\mathcal{N}=2 \mathrm{SCQCD} \oplus$ decoupled $S U\left(N_{\check{c}}\right)$ vector multiplet
For $\breve{g}_{Y M}=0$, global symmetry enhancement $S U\left(N_{\check{c}}\right) \times S U(2)_{L} \rightarrow U\left(N_{f}=2 N_{c}\right)$: $(\check{a}, \hat{\mathcal{I}}) \equiv i=1, \ldots N_{f}=2 N_{c}$
$c=a=\frac{N_{c}^{2}}{2} \quad$ along the whole marginal deformation

For $\check{g}_{Y M}=0$, interpret as

$$
a=\left(\frac{7}{24}+\frac{5}{24}\right) N_{c}^{2} \quad c=\left(\frac{8}{24}+\frac{4}{24}\right) N_{c}^{2}
$$

Spin-chain for interpolating family

\[

\]

Spin-chain has very interesting dynamics.

S-matrix factorizes into "left" and "right"

$$
S_{Q \bar{Q}}\left(p_{1}, p_{2}, \kappa\right)=-S_{L}\left(p_{1}, p_{2}, \kappa\right) S_{R}\left(p_{1}, p_{2}, \kappa\right) \quad \kappa \equiv \check{g} / g
$$

$S U(2)_{L}$	$S_{L}\left(p_{1}, p_{2}, \kappa\right)$	$S U(2)_{R}$	$S_{R}\left(p_{1}, p_{2}, \kappa\right)$
1_{L}	$\mathcal{S}\left(p_{1}, p_{2}, \kappa-\frac{1}{\kappa}\right)$	1_{R}	$\mathcal{S}^{-1}\left(p_{1}, p_{2}, \kappa\right)$
3_{L}	$\mathcal{S}\left(p_{1}, p_{2}, \kappa\right)$	3_{R}	-1

$\mathcal{S}\left(p_{1}, p_{2}, \kappa\right) \equiv-\frac{1-2 \kappa e^{i p_{1}}+e^{i\left(p_{1}+p_{2}\right)}}{1-2 \kappa e^{i p_{2}}+e^{i\left(p_{1}+p_{2}\right)}}$

Yang-Baxter fails for $\check{g} \neq g$, but holds again for $\check{g}=0$!

"Dimeric" excitations $T(p), \widetilde{T}(p)$ and $\mathcal{M}_{\mathbf{3}}$ emerge smoothly as bound states as $\check{g} \rightarrow 0$

Interpolating theory has vastly more protected "closed" states than $\mathcal{N}=2 \mathrm{SCQD}$: towers of states with arbitrary high (and equal) $S U(2)_{L}$ and $S U(2)_{R}$ spins

For $\breve{g} \rightarrow 0$, they are re-interpreted as multiparticle states of short open strings

Top-down: embedding in string theory

Well-known realizations of interpolating SCFT in string theory.
\mathbb{Z}_{2} orbifold of $\mathcal{N}=4$ SYM realized on N_{c} D3 branes on $\mathbb{R}^{4} / \mathbb{Z}_{2} \times \mathbb{R}^{2}$ Douglas Moore
Near-horizon geometry is the familiar background $A d S_{5} \times S^{5} / \mathbb{Z}_{2}$ Kachru-Silverstein

Varying relative couplings corresponds to changing period of $B_{N S}$ on collapsed S^{2} :
at orbifold point $g=\check{g}$ and $\int_{S^{2}} B_{N S}=1 / 2$.
As $\check{g} \rightarrow 0, \int B_{N S} \rightarrow 0$: singular Calabi-Yau.

More useful to T-dualize to Hanany-Witten setup in Type IIA:
Two stacks of N_{c} D4s suspended between two NS5 branes

NS5	012345	
D4	0123	6

with $x_{6} \sim x_{6}+2 \pi R_{6}$.
Interpolating family of theories parametrized by $\gamma=L_{6} / R_{6}$, where L_{6} is the distance between the two NS5s.

- For $\gamma=\pi, \mathbb{Z}_{2}$ orbifold of $\mathcal{N}=4$ SYM:

Varying γ, exactly marginal deformation of the \mathbb{Z}_{2} orbifold.

Two gauge couplings

$$
\begin{gathered}
\frac{1}{g^{2}}=\frac{\gamma R_{6}}{g_{s} l_{s}} \quad \frac{1}{\breve{g}^{2}}=\frac{(2 \pi-\gamma) R_{6}}{g_{s} l_{s}} \\
\frac{1}{g^{2}}+\frac{1}{\breve{g}^{2}}=\frac{2 \pi R_{6}}{g_{s} l_{s}} \quad \frac{\check{g}^{2}}{g^{2}}=\frac{\gamma}{2 \pi-\gamma}
\end{gathered}
$$

Decoupling limit

$$
g_{s} \rightarrow 0, \quad l_{s} \rightarrow 0, \quad R_{6} \rightarrow 0
$$

with g, \check{g} fixed.
Hierarchy of scales

$$
L \gg l_{s} \gg R_{6} \geq L_{6} \equiv \gamma R_{6}
$$

where L is the length above which field theory description is valid.

- T duality around $x_{6}: N_{c}$ D3 branes on

2-center Taub-Nut $\times \mathbb{R}^{2} \xrightarrow{R_{6} \rightarrow 0} \mathbb{R}^{4} / \mathbb{Z}_{2} \times \mathbb{R}^{2}$.
The angle γ is mapped to the $B_{N S}$ flux the on collapsed S^{2},

$$
\int_{S^{2}} B_{N S}=\frac{\gamma}{2 \pi}
$$

Indeed $\int B_{N S}=1 / 2$ at the CFT orbifold point Aspinvall
Note also that

$$
g_{s}^{I I B}=\frac{l_{s}}{R_{6}} g_{s}^{I I A}=g^{2} \gamma
$$

As $\gamma \rightarrow 0$, we can focus on local singularity.

Precisely in the limit we are interested in, correct description of the two NS5 branes is in terms of

8d non-critical string theory

with exact CFT (after an angular T-duality) $\mathbb{R}^{(5,1)} \times S L(2)_{2} / U(1)$ Giveon-Kutasov

Recall that for k NS5 branes on a circle double-scaling limit gives $\left(S L(2)_{k} / U(1) \times S U(2)_{k} / U(1)\right) / \mathbb{Z}_{k}$ The piece of the geometry which is "lost" in $10 d \rightarrow 8 d$ is the $S U(2) / U(1)$ factor of the CFT, which has $c=0$ for $k=2$ NS5s.

Holographically the loss of a piece of the geometry (and of associated KK tower) gets related to the decoupling of the extra vector multiplet and restriction to $S U(2)_{L}$ singlets.

Symmetry enhancement in cigar CFT for $k=2$:
circle at free-fermion radius, $S U(2) \times S U(2)$ current algebra, broken to the diagonal $S U(2)$ by cigar interaction:
interpreted as 789 rotations in HW setup

Nice understanding of D-branes on the $S L(2) / U(1)$ cigar CFT
Israel-Pakman-Troost, Ashok-Murthy-Troost, Fotopulos-Niarchos-Prezas,
Compact ("color") D4s \rightarrow branes localized at the tip of the cigar, filling $\mathbb{R}^{(3,1)} \subset \mathbb{R}^{(5,1)}$
Non-compact ("flavor") D4s \rightarrow branes filling the cigar and $\mathbb{R}^{(3,1)} \subset \mathbb{R}^{(5,1)}$

Precisely for $N_{f}=2 N_{c}$ the dilaton tadpole of combined brane system cancels Murthy Troost

We are interested in the background after the backreaction of the branes.
Exact RR σ model still not known. Plausible ansatz:

$$
d s^{2}=f(\alpha)\left[\frac{d r^{2}}{r^{2}}+r^{2} d x_{\mu} d x^{\mu}\right]+d \alpha^{2}+g(\alpha) d \theta^{2}+h(\alpha) d \varphi^{2}
$$

with $\theta 45$ angle, φ cigar angle, $r^{2}=r_{45}^{2}+r_{\text {cigar }}^{2}, \tan \alpha=r_{45} / r_{\text {cigar }}$.
Expect $f \sim g \gg h \sim l_{s}^{2}$ for generic α, and $g(\alpha=0)=0$.
(Note that before backreaction D5 ("flavor") branes wrap φ and are localized at $\alpha=0$).

General features seem to match nicely bottom-up expectations:

- R-symmetry:
$U(1)_{r}$ symmetry from 45 isometry (large circle which gives KK modes), $S U(2)_{R}$ comes stringy cigar symmetry $\left(S U(2)_{R}\right.$ gauge-fields only)
- Spacetime susy: cigar $\times \mathbb{R}^{(5,1)}$ has $(4,0)$ (16 supercharges) on Minkowski directions Branes break $1 / 2$, near-horizon doubles again to 16 Supercharges $=8 \mathrm{Q}+8 \mathrm{~S}$
- Closed string spectrum on non-critical IIB on $\mathbb{R}^{(5,1)} \times S L(2)_{2} / U(1)$:
(i) Normalizable modes localized at tip of the cigar:

6 d tensor $(4,0)$ multiplet $\leftrightarrow\left\{\operatorname{Tr} \phi^{l}, \operatorname{Tr} \mathcal{M}_{3}\right\}$
(ii) Delta-function normalizable modes propagating in the bulk.

Naively "massive", but lowest modes on S^{1} of cigar (e.g. graviton) have in fact "massless" 7d gauge invariance

Richer spectrum that just 6 d graviton multiplet. Its KK reduction on large S^{1} should match with $\left\{\operatorname{Tr} T \phi^{\ell}\right\}$, but need back-reacted geometry

Explanation of the anomaly puzzle?

- For the whole interpolating family, $c=a$ after all!

As $\check{g} \rightarrow 0$, second vector multiplet becomes free but still contributes to the anomaly. In the dual bulk theory it must correspond to $\sim N_{c}^{2}$ decoupled "singleton" d.o.f.

So if we keep the spectator vector multiplet, it is consistent to assume that the dual theory has standard Einstein-Hilbert term in $A d S_{5}$.

- Alternatively, we may wish to discuss the theory

Speculation: integrating out the singletons generate the Chern-Simons term (and its susy completion) that contributed to $c-a$.

Conclusions

Natural speculation:
4d QFTs with lower (genuinely) lower susy are holographic to non-critical strings
$\mathcal{N}=4: 10 \mathrm{~d}$, critical case Maldacena
$\mathcal{N}=2: 8 \mathrm{~d}$ (this talk)
$\mathcal{N}=1: 6 \mathrm{~d} \mathrm{Klebanov}^{\text {Maldacena }}$
$\mathcal{N}=0: 5 \mathrm{~d} ?$ Polyakov

We gave evidence for $\mathcal{N}=2$ case, in simplest theory beyond " $\mathcal{N}=4$ universality class":
Bottom-up (one-loop hamiltonian, superconformal representation theory) and the top-down (string theory) suggest duality
$\mathcal{N}=2$ SYM SCQCD \leftrightarrow non-critical 8d IIB string theory with large $A d S_{5} \times S^{1}$

Still a lot of work to do!

- Integrability of our spin chain (for $\check{g}=0$)? asymptotic Bethe ansatz?
- Magnon S-matrix from dual sigma model

Certainly doable around orbifold point. Integrability not essential for comparison.

- Transition between critical and non-critical string
- Precise σ model with RR flux:
from supercoset construction?
- Implications for $\mathcal{N}=1$ SQCD?

Many new possibilities.

