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11 years of AdS/CFT

Paradigm: N = 4 SYM ↔ IIB on AdS5 × S5
Maldacena

Extremely rich example

All other gravity duals of 4d gauge theories are rather close cousins of this case:
motivated from D3 branes at local singularities in critical string theory

• Adjoint or bifundamental matter (quivers).
Fundamental flavors can be added in probe approximation Nf # Nc

• Susy can be broken but there are always remnants of the “extra” matter

• Anomaly coefficients a = c at large Nc. “No-go theorem” (?)
Bulk Weyl anomaly calculation always gives a = c at leading order Henningson Skenderis

• Dual geometries are 10d
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11 years of AdS/CFT

Paradigm: N = 4 SYM ↔ IIB on AdS5 × S5
Maldacena

Extremely rich example

Well-understood duals of 4d gauge theories are rather close cousins of this case:
motivated from D3 branes at local singularities in critical string theory
(see Dario’s talk)

• Adjoint or bifundamental matter (quivers).
Fundamental flavors can be added in probe approximation Nf # Nc

• Susy can be broken but there are always remnants of the “extra” matter

• Anomaly coefficients a = c at large Nc. “No-go theorem” (?)
Bulk Weyl anomaly calculation always gives a = c at leading order Henningson Skenderis

• Dual geometries are 10d

• Radius of curvature R related to coupling λ (a modulus),
R ∼ λ1/4, can be taken arbitrarily large (but λ→ 0 not always an option)
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’t Hooft gave a very general heuristic argument for

“Large N field theory = closed string theory with gs ∼ 1/N”

So far we understand “well” only a limited class of dualities,
for the theories “in the universality class” of N = 4 SYM

∃ many string constructions of field theories with genuinely fewer d.o.f. in the IR
(say pure SU(N), or N = 1 SYM).

However if one takes a limit that decouples the unwanted UV d.o.f,
the dual string is described (at best) by a strongly curved sigma model.

Hopefully this is just a technical problem, but progress has so far been limited.
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Attack “next simplest case”

Ideal case study:

N = 2 SYM with Nf = 2Nc fundamental hypermultiplets

N = 2 SCQCD
Large amount of susy, exact conformal invariance, tunable gY M

Large N limit à la Veneziano: Nc ∼ Nf

• What (if any) is the dual string theory?

λ = g2
Y MNc is an exactly marginal coupling, just as in N = 4 SYM.

For large λ, a weakly curved gravity description?

String theory on... AdS5 × X ?

Long-standing open problem!
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To go beyond this universality class, new ideas are needed.

Focus on theories with large number of fundamental flavors, Nf ∼ Nc.

Veneziano limit: Nc →∞ , Nf →∞ with Nf/Nc fixed, λ = g2
Y MNc fixed.

Important applications to AdS/QCD.

Holography in the Veneziano limit?

’t Hooft argument for existence of dual closed string theory at large N
can be adapted to the Veneziano limit.

Schematically:

adjoint fields φa
b

fundamental fields qa
i

a = 1, . . . , Nc color index

i = 1, . . . , Nf flavor index
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Two kinds of double lines:

Adjoint lines

〈φ φ〉
Quark lines

〈q q〉
Quark lines not suppressed.

Vacuum Feynman diagrams → bi-colored Riemann surfaces ∼ N 2−2g

suggesting as usual a dual closed string theory with gs = 1/N .

Main novelty:
glueball operators

Tr(φ . . . φ)

(color-trace)
mix at leading order with
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flavor-singlet mesons

q̄iφ . . . φqi

Define flavor-contracted combination Ma
b ≡ qa

iq
i
b

In flavor-singlet sector, basic building blocks are the single-trace operators

Tr(φk1Ml1φk2Ml2 . . . )

Usual large N factorization arguments apply.

• In the (conjectural) dual string theory, large meson/glueball mixing interpreted as large
backreaction of the “flavor” branes (need to resum open string perturbation theory).
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Plan of attack

From the “bottom-up”:

• Perturbative anomalous dimensions:

integrable spin-chain? emergent geometry? asymptotic Bethe ansatz?

• Spectrum of protected single-trace operators: KK spectrum?

• . . .

From the “top-down”:

• Engineer it with branes in string theory

• Integrable sigma model of coset type?

• . . .

Work in progress, but already enough elements to make a concrete proposal.
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From the gauge theory to the spin chain

December 16, 2008

Lets start by presenting the field theory content of N = 2 SU(Nc) SYM
coupled to Nf hypermultiplets. The N = 2 vector multiplet consists of a
gauge field Aµ, two Weyl spinors λIα, I = 1, 2 and one complex scalar φ, all
in the adjoint representation of SU(Nc). The Weyl spinors form a doublet
under the SU(2)R and the scalar φ has U(1)r charge −1. A complete list
of the charges of all fields is presented in table . The Lagrangian of N = 2
vector multiplet reads:

SV = −
∫

d4x Tr
(1

4
F µνFµν + i λ̄I σ̄

µDµλ
I + (Dµφ) (Dµφ)† (1)

+
√

2 i g εIJλIλJφ† −
√

2 i g εIJ λ̄I λ̄Jφ +
g2

2

[
φ , φ†

] )

in the above we follow convensions where Dµ = ∂µ +i g Aµ and εIJ εJK = δKI .
Each N = 2 hypermultiplet consists of two complex scalar fields that

form an SU(2)R doublet QI = (q , q̃∗) and two Weyl spinors ψα and ψ̃α.
QI ’s are uncharged under the U(1)r while both ψα and ψ̃α cary charge +1/2.
The Lagrangian of Nf N = 2 hypermultiplets coupled to N = 2 SU(Nc)
SYM is:

SH = −
∫

d4x
( (

DµQ̄I) (DµQI) + i ψ̄σ̄µDµψ + i ψ̃σ̄µDµ
¯̃ψ (2)

+
√

2 i g εIJ ψ̄λ̄IQJ −
√

2 i g εIJ Q̄IλJψ +
√

2 i g ψ̃λIQI −
√

2 i g Q̄I λ̄I
¯̃ψ

−2 g2Q̄Iφ
†φQI +

√
2 i g ψ̃φψ −

√
2 i g ψ̄φ̄ ¯̃ψ + g2VQ

)
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SU(Nc) U(Nf ) SU(2)R U(1)r

QI
α 1 1 2 +1/2

SI α 1 1 2 −1/2
Aµ Adj 1 1 0
φ Adj 1 1 −1
λIα Adj 1 2 −1/2
QI ! ! 2 0
ψα ! ! 1 +1/2
ψ̃α ! ! 1 +1/2
M1 Adj + 1 1 1 0
M3 Adj + 1 1 3 0

Table 1: Symmetries of N = 2 SCQCD. We show the quantum numbers of the supercharges QI ,
SI , of the elementary components fields and of the mesonic operators M. Complex conjugate objects
(such as Q̄Iα̇ and φ̄) are not written explicitly.

which may be decomposed into into the SU(2)R singlet and triplet combinations

M1 ≡M I
I and M I

3J ≡M I
J −

1
2
M K

K δIJ . (2.2)

The operators M decompose into adjoint plus singlet representations of the color group
SU(Nc); the singlet piece is however subleading in the large Nc limit.

2.2 Z2 orbifold of N = 4 and interpolating family of SCFTs

N = 2 SCQCD can be viewed as a limit of a family of superconformal theories; in the opposite
limit the family reduces to a Z2 orbifold of N = 4 SYM. In this subsection we first describe
the orbifold theory and then its connection to N = 2 SCQCD.

As familiar, the field content of N = 4 SYM comprises the gauge field Aµ, four Weyl
fermions λA

α and six real scalars XAB, where A, B = 1, . . . 4 are indices of the SU(4)R R-
symmetry group. Under SU(4)R, the fermions are in the 4 representation, while the scalars
are in 6 (antisymmetric self-dual) and obey the reality condition5

X†
AB =

1
2
εABCDXCD . (2.3)

We may parametrize XAB in terms of six real scalars Xm, m = 4, . . . 9,

XAB =
1√
2





0 X4 + iX5 X7 + iX6 X8 + iX9

−X4 − iX5 0 X8 − iX9 −X7 + iX6

−X7 − iX6 −X8 + iX9 0 X4 − iX5

−X8 − iX9 X7 − iX6 −X4 + iX5 0




(2.4)

5The † indicates hermitian conjugation of the matrix in color space. We choose hermitian generators for
the color group.
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The One-Loop Hamiltonian in the Scalar Sector

We have evaluated the complete one-loop hamiltonian acting on single-trace operators
made of scalars,

Tr
[
φkφ̄"Mm

1Mn
3

]

(arbitrary permutations thereof)

Wave function renormalization diagrams

Gluon exchange diagrams

Quartic diagrams

SU(2)R indices I, J , K, L · · · = 1, 2

SO(2)r indices m̂, n̂ · · · = 1, 2

U(1)r indices m, n · · · = 1, 2
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Figure 3: One-loop diagrams.

(a) (b) (c) (d) (e)

Figure 4: The Fat diagrams will have color lines which are black and flavor
lines that are blue. The open lines have to will be linked to the spin chain.

is large N subleading to a gluon contribution between two squarks when
they are flavor contracted (f.c.) in a mesonMa

b = Qa
i Q̄i

b with open color
indices in the spin chain

ZQQ̄
A f.c. = 0 δa

b δc
d (38)

We can though have a gluon that connects two mesons. This interaction we
call color contracted (c.c.) and it represented in (4(e)):

ZQQ̄
A c.c. = (1− ξ)

g2 Nc

8π2
δi
j δk

l I ln Λ (39)

In the spin chain picture this will lead to interactions between mesons. Be-
tween a squark and a φ scalar a gluon can propagate as in Figure (4(b))

ZQφ̄
A − 1 = (1− ξ)

g2 Nc

8π2
δa
b δj

i I ln Λ (40)
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The One-Loop Hamiltonian in the Scalar Sector

We have evaluated the complete one-loop hamiltonian acting on single-trace
operators made of scalars,

Tr
[
φkφ̄"Mm

1Mn
3

]

(arbitrary permutations thereof)

It can be interpreted as the hamiltonian of a closed spin chain.

Crucial observation: large N ensures locality of the hamiltonian.
Nearest neighbor at one-loop, next-to nearest at two loops, . . .
(Still true in the Veneziano limit).

Wave function renormalization diagrams

Gluon exchange diagrams

Quartic diagrams

Each site of the chain occupied by 6d vector space spanned by φ, φ̄, QI, Q̄J .

9
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Figure 2: one-loop γφ

2.2 Free propagation, Permutation and Trace Opera-
tors

The matrix of anomalous dimensions is usually expressed in terms of two
elemtary operators which act on each site and connect the ”incoming” oper-
ator OI

J with the ”outgoing” ŌL
K:

the trace operator:
KJL
IK = δJI δLK (24)

and the permutation operator:

PJLIK = δIKδJL (25)

We also find it usefull to define the identity element:

IJLIK = δLI δJK (26)

for free propagation. For this N = 2 unquenched spin chain we need to
introduce these three operators with two types of indices. SU(2)R indices
I, J , K, L · · · = 1, 2 because the QI scalars are an SU(2)R doublet and
U(1)r ∼ SO(2)r indices m̂, n̂ · · · = 1, 2 because the φ scalar is charged
under U(1)r with charge +1 while the φ̄ scalar is charged under U(1)r with
charge −1. It might be usefull to go to a basis where the SO(2)r ∼ U(1)r is
explicit and for that I need to write

φ =
1√
2

(φ1 + iφ2) (27)

5
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The One-Loop Hamiltonian in the Scalar Sector

We have evaluated the complete one-loop hamiltonian acting on single-trace
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It can be interpreted as the hamiltonian of a closed spin chain.

Crucial observation: large N ensures locality of the hamiltonian.
Nearest neighbor at one-loop, next-to nearest at two loops, . . .
(Still true in the Veneziano limit).
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2.3 One-loop dilation operator in the scalar sector

At large Nc ∼ Nf the natural gauge-invariant operators of N = 2 SCQCD are of the gen-
eralized single-trace form (1.1). Motivated by the success of the analogous calculation in
N = 4 SYM [17], we have evaluated the one-loop dilation operator on generalized single-trace
operators made out of scalar fields. An example of such an operator is

Tr[φ̄φφQIQ̄
J φ̄] = φ̄a

bφ
b
cφ

c
dQ

d
I iQ̄

J i
eφ̄

e
a , a, b, c, d, e = 1, . . . Nc , i = 1, . . . Nf . (2.19)

Since the color or flavor indices of consecutive elementary fields are contracted, we can assign
each field to a definite “lattice site”8 and think of a generalized single-trace operator as a
state in a periodic spin-chain. In the scalar sector, the state space Vl at each lattice site is
six-dimensional, spanned by {φ, φ̄, QI , Q̄J }. However the index structure of the fields imposes
restrictions on the total space ⊗L

l=1Vl: not all states in the tensor product are allowed. Indeed
a Q at site l must always be followed by a Q̄ at site l + 1, and viceversa a Q̄ must always be
preceded by a Q. Equivalently, we may use instead the color-adjoint objects φ, φ̄, M1 and
M3 (recall the definitions (2.2), where the M’s are viewed as “dimers” occupying two sites of
the chain.

As usual, we may interpret the perturbative dilation operator as the hamiltonian of the
spin-chain. It is convenient to factor out the overall coupling from the definition of the
hamiltonian H,

Γ(1) ≡ g2H , g2 ≡ λ

8π2
, λ ≡ g2

Y MNc , (2.20)

where Γ(1) is the one-loop anomalous dimension matrix. By an immediate extension of the
usual arguments, the Veneziano double-line notation (Figure 1) makes it clear that for large
Nc ×Nf (with λ fixed) the perturbative dilation operator acts locally on the spin-chain. The
one-loop hamiltonian is of nearest-neighbor type, H =

∑L
l=1 Hkk+1 (with k ≡ k + L), where

Hk,k+1 : Vk ⊗ Vk+1 → Vk ⊗ Vk+1. The two loop correction is next-to-nearest-neighbor and so
on. We now simply quote our result for Hkk+1 in N = 2 SYM with gauge group SU(Nc) and
Nf fundamental hypermultiplets [16]9,

Hk,k+1 =

0

BBBBBBB@

φpφq QIQ̄J Q̄KQL QIφp

φp′φq′ 2δp
p′δ

q
q′ + gpqgp′q′ − 2δp

q′δ
q
p′

q
Nf

Nc
gp′q′δJI 0 0

Q̄I
′
QJ ′

q
Nf

Nc
gpqδI

′
J ′ (2δI

′
I δJJ ′ − δJI δI

′
J ′ )

Nf

Nc
0 0

QK′Q̄L
′

0 0 2δKL δL
′

K′ 0

Q̄I
′
φp′ 0 0 0 2δI

′
I δp

p′

1

CCCCCCCA

8Up to cyclic re-ordering of course, under which the trace is invariant.
9The spin-chain with this nearest-neighbor hamiltonian reproduces the one-loop anomalous dimension of

all operators with L > 2, where L is the number of sites. The L = 2 case is special: the double-trace terms in
the scalar potential, which give subleading contributions (at large N) for L > 2, become important for L = 2

and must be added separately. This special case plays a role in the protection of TrM3, see section 3.
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Permutation operator

PJLIK = δIKδJL

Identity operator
IJLIK = δLI δ

J
K

(Similarly for indices of type m)
We can also write the hamiltonian in terms of spin-spin interactions of the nearest neigh-
bour spins,

Possible to obtain the spin-chain in terms of only adjoint “spins”: φ, φ̄ and the mesonic
combinations M1 and M3.
The price to pay is that the spin chain becomes dynamic (number of sites can change).
Define meson operators in an SO(4) covariant way

Mm =
1√
2
M J

I (σm)IJ

m = 0, . . . , 4 with σ0 ≡ I2×2.
SO(4) spin operators,

(Σij)mn ≡ δi
mδj

n − δi
nδ

j
m

P0 ≡ δm0, projection operator onto M0.
Following Beisert, make the spin-chain “undynamic”.
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Here the indices p, q = ± label the U(1)r charges of φ and φ̄, in other terms we have defined

φ− ≡ φ, φ+ ≡ φ̄, and gpq =

(
0 1
1 0

)
. The result is valid for arbitrary large Nf ∼ Nc. (For

Nf #= 2Nc the one-loop beta function is non-vanishing, but, as seen from the Callan-Symanzik
equation, this does not affect the calculation of the one-loop dilation operator.)

We introduce the symbols I, P and K for identity, permutation and trace operators re-
spectively. Their position in the matrix specifies the space in which they act. For example,
the operator P that appears in the matrix element of 〈φp′φq′ |φpφq〉 is δp

q′δ
q
p′ , the operator K

that appears in the matrix element 〈φpφq|QIQ̄J 〉 stands for the operator gpgqδ
J
I and so on.

With this notation, we may re-write Hkk+1 more concisely,

Hk,k+1 =

0

BBBBBB@

φφ QQ̄ Q̄Q Qφ

φφ 2I + K− 2P
q

Nf

N K 0 0

Q̄Q
q

Nf

N K (2I−K)
Nf

Nc
0 0

QQ̄ 0 0 2K 0

Q̄φ 0 0 0 2I

1

CCCCCCA
(2.21)

Artificially restricting the hamiltonian to the space of φ (and φ̄) gives 2Iφφ + Kφφ − 2Pφφ,
which is hamiltonian of the XXZ spin chain, confirming the result found in [?] for pure N = 2
SYM. The φ sector is not closed in our case due to the leading order glueball-meson mixing.
The mixing element that is responsible for φφ → QQ is proportional to K in φ space. Both of
these element vanish when the neighbouring φ fields have the same U(1) index. This implies
that the operator Tr[φk] is protected, and we can think of it as the ferromagnetic ground state
of the spin chain (all spins are pointing down). The impurities that can be excited on this
ground state are φ̄, M1 and M3, where the last two are “dimeric” impurities which occupy
two sites.

The cyclicity of the trace gives periodic boundary conditions on the spin-chain, along with
the constraint that the total momentum of all the impurities in the spin must be zero. As usual,
it is convenient to first consider the chain to be infinite, and impose later the zero-momentum
constraint on multi-impurity states. The action of the Hamiltonian on single-impurities is

H[φ̄(x)] = 6φ̄(x)− φ̄(x + 1)− φ̄(x− 1) (2.22)

+

√
2Nf

Nc
M1(x) +

√
2Nf

Nc
M1(x− 1) (2.23)

H[M1(x)] = 4M1(x) +

√
2Nf

Nc
φ̄(x) +

√
2Nf

Nc
φ̄(x + 1)

H[M3(x)] = 8M3(x) , (2.24)

where the coordinate x denotes the position (site) of the impurity on the chain; for the dimeric
impurities M1 and M3 we use the coordinate of the first site. To diagonalize the hamiltonian
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This spin-chain hamiltonian appears to be new.

Vacuum Tr(φ").

Study excitations above the vacuum in the language of the asymptotic Bethe ansatz.

Diagonalization in the one-impurity sector reveals that lowest-lying magnon has gap

E0 =
λ

2π2

(
1− Nf

2Nc

)

The chain is gapless for Nf = 2Nc!

The Nf = 0 case has been considered before. Di Vecchia–Tanzini

It is isomorphic to the TrZkZ̄" sector of N = 4 SYM: XXZ chain.
Vanishing gap suggests continuum limit of the chain and emergent geometry.
(Recall BMN case).
Light magnons correspond to the propagation of T ≡ φφ̄−M1 along the chain.

For Nf = 2Nc, zero-momentum state TrTφ" has zero anomalous dimension, so E0 = 0.

Preliminary investigations suggest that lightest magnons form an effective XXX chain.
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on the φ̄/M1 sector, we go to momentum space,

φ̄(p) ≡
∑

x

φ̄(x)eipx , M1(p) ≡
∑

x

M1(x)eipx (2.25)

H

(
φ̄(p)
M1

)
=



 6− eip − e−ip (1 + e−ip)
√

2Nf

Nc

(1 + eip)
√

2Nf

Nc
4




(

φ̄(p)
M1

)
. (2.26)

Eigenvalues and the form of eigenstates is not very illuminating for generic values of the ratio
Nf/Nc. For the case of Nf = 2Nc, however, they simplify. In that case, the eigenstates are

T (p) ≡ −1
2
(1 + e−ip)φ̄(p) +M1(p) =

∑

x

eipx[−1
2
(φ̄(x) + φ̄(x + 1)) +M1(x)] (2.27)

T̃ (p) ≡ φ̄(p) +
1
2
(1 + eip)M1(p) =

∑

x

eipx[φ̄(x) +
1
2
(M1(x) +M1(x− 1))] , (2.28)

with eigenvalues

HT (p) = 4 sin2(p) T (p) (2.29)
HT̃ (p) = 8 T̃ (p) . (2.30)

For N = 2 SCQCD, Nf = 2Nc and the magnon excitation T (p) becomes gapless. From now
on we will only consider the superconformal case and set Nf ≡ 2Nc.

We have generalized the calculation of the one-loop dilation operator to the full interpo-
lating family of N = 2 SCFTs [],
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Figure 4: 1/N vertex diagrams

Figure 5: Gluon interaction

2

Protected Operators

From explicit one-loop calculation in the scalar sector, the single-trace operators
with γ = 0 are

• TrM3

• Tr φ#, with # ≥ 2.

• Tr T φ#, with # ≥ 0, where T ≡ φ̄φ−M1.

Note that Tr T (∆ = 2) is the lowest weight state of the N = 2 stress-tensor multiplet.
These operators are superconformal primaries.
In the free theory they are the lowest weight states of (semi-)short multiplets.
In the interacting theory (semi-)short multiplets can a priori combine into long multiplets with γ $= 0.

Protection of Trφ# easily proved to all orders from superconformal representation theory:
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Label Shortening Conditions Multiplet
B1 Q1

α|R, r〉h.w. = 0 j = 0 ∆ =2 R + r BR,r(0,j̄)

E B1 ∩ B2 R = 0 ∆ = r Er(0,j̄)

B̂ B1 ∩ B̄2 r = 0, j, j̄ = 0 ∆ =2 R B̂R

C1 εαβQ1
β|R, r〉h.w.

α = 0 ∆ = 2 + 2j + 2R + r CR,r(j,j̄)

(Q1)2|R, r〉h.w. = 0 for j = 0 ∆ = 2 + 2R + r CR,r(0,j̄)

F C1 ∩ C2 R = 0 ∆ = 2 + 2j + r C0,r(j,j̄)

Ĉ C1 ∩ C̄2 r = j̄ − j ∆ = 2 + 2R + j + j̄ ĈR(j,j̄)

F̂ C1 ∩ C2 ∩ C̄1 ∩ C̄2 R = 0, r = j̄ − j ∆ = 2 + j + j̄ Ĉ0(j,j̄)

D B1 ∩ C̄2 r = j̄ + 1 ∆ = 1 + 2R + j̄ DR(0,j̄)

G E ∩ C̄2 r = j̄ + 1, R = 0 ∆ = 1 + j̄ D0(0,j̄)

Table 3: Shortening conditions and short multiplets for the N = 2 superconformal algebra [18].

Scalar Multiplets SCQCD operators Protected
BR,r(0,0) Tr[φ̄rMR

3 ]
Er(0,0) Tr[φ̄r] !
B̂R Tr[MR

3 ] ! for R = 1
CR,r(0,0) Tr[TMR

3 φ̄r]
C0,r(0,0) Tr[T φ̄r] !
ĈR(0,0) Tr[TMR

3 ]
Ĉ0(0,0) Tr[T ] !
DR(0,0) Tr[MR

3 φ̄]

Table 4: N = 2 SCQCD protected operators at one loop

The operators Trφ# correspond to the vacuum of the spin-chain, while the operators
TrT φ# correspond to the zero-momentum limit of the gapless excitation T (p), equ.(??). There
is one more protected operator, which is “exceptional” in not belonging to an infinite sequence:
TrM3. Its anomalous dimension is zero for gauge group SU(Nc) but not for gauge group
U(Nc): the double-trace terms in the Lagrangian that arise from the removal of the U(1) are
crucial for the protection of this operator (see footnote at page ??).

3.2 Protected spectrum of the orbifold

At the orbifold point (g = ǧ) the state space of the field theory is the direct sum of an
untwisted and a twisted sector, respectively even and odd under the “quantum” Z2 symmetry
(2.18).

Untwisted sector

Operators in the untwisted sector of the orbifold descend from operators of N = 4 SYM
by projection onto the Z2 invariant subspace. Their correlators coincide at large Nc with

– 17 –



Protected Operators
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15

(Situations more intricate than in N = 4 SYM where the only single-trace protected
multiplets are the 1/2 BPS multiplets.)
There are no other single-trace protected multiplets.

15

Protected Operators

From explicit one-loop calculation in the scalar sector, the single-trace operators
with γ = 0 are

• TrM3

• Tr φ#, with # ≥ 2.

• Tr T φ#, with # ≥ 0, where T ≡ φ̄φ−M1.

Note that Tr T (∆ = 2) is the lowest weight state of the N = 2 stress-tensor multiplet.
These operators are superconformal primaries.
In the free theory they are the lowest weight states of (semi-)short multiplets.
In the interacting theory (semi-)short multiplets can a priori combine into long multiplets with γ $= 0.

Protection of Trφ# easily proved to all orders from superconformal representation theory:
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Protection of TrM3 and of Tr T φ# more subtle,
we prove it by computing (essentially) a superconformal index.
Most easily done in interpolating family of SCFTs (coming up soon).
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Protected operators strongly suggestive of a supergravity spectrum
from Kaluza-Klein on S1

Remarkably, {TrM3 , Tr φ" } can be exactly matched to

KK reduction of 6d (4, 0) tensor multiplet on AdS5 × S1!

However there is no simple 6d origins for the {Tr T φ" } states.

KK reduction on S1 of 6d (4, 0) supergravity multiplet can yield only a subset of
{Tr T φ" }.

(At any rate a 6d (4, 0) sugra theory would be problematic for anomaly cancellation).
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6d geometry??

Protected operators strongly suggestive of a supergravity spectrum
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Remarkably, {TrM3 , Tr φ" } can be exactly matched to

KK reduction of 6d (4, 0) tensor multiplet on AdS5 × S1!

However there is no simple 6d origins for the {Tr T φ" } states.

KK reduction on S1 of 6d (4, 0) supergravity multiplet can yield only a subset of
{Tr T φ" }.

(At any rate a 6d (4, 0) sugra theory would be problematic for anomaly cancellation).

16



∆ R(j,j̄) f

2 1(0,0) t4v−1

5/2 1
2( 1

2 ,0) −t6

Table 10: Operators with δ = 0 in B̂R

divide it by the contribution
(
1− t3y

) (
1− t3y−1

)
from the derivatives,

iφ!(>1) =
(
1− t3y

)−1 (
1− t3y−1

)−1
∞∑

"=2

t2"v"(1− t1v−1(y + y−1) + t2v−2)

=
t4v2(1− t

vy )(1− ty
v )

(1− t2v) (1− t3y) (1− t3y−1)

There is also the conjugate multiplet E"(0,0) with the shortenning condition ∆ = " that corre-
sponds to the operator Tr[φ̄"], but there is no member with " > 1 that can have zero δ. Hence,
the total index for both of these multiplets including the " = 1 case is,

iφ! = iφ!(>1) + f(t, y, v) (A.13)

A.3 M3 multiplet

Let us consider, the symmetric multiplet B̂R [18], with the shortenning condition that the
heighest weight state is anihilated by Q2, Q̄1. Imposition of this condition requires r = 0,
j = j̄ = 0 and ∆ =2 R for the heighest weight state.

∆

2 1(0,0)

5/2 1
2( 1

2 ,0)
1
2(0, 12)

3 0(0,0) 0( 1
2 , 12) 0(0,0)

7/2

4 −0(0,0)

r −1 −1/2 0 1/2 1

(A.14)

In this multiplet, only two operators have δ = 0:
Summing the individual contributions and correcting for the derivatives, we get the index

for this multiplet as,

iM3 =
t4

(
1− t2v

)

v (1− t3y) (1− t3y−1)
(A.15)

The complete single trace index for the twisted sector of the orbifold is,
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∆ R(j,j̄) f

! 0(0,0) t2!v!

! + 1
2

1
2(0, 12)

−t2!+1v!−1
(
y + y−1

)

! + 1 1(0,0) t2!+2v!−2

Table 9: Operators with δ = 0 in E!(0,0)

Zuntwisted
s.t. =

t2v

1− t2v
+ 2

t4

v

1− t4
v

− t3y

1− t3y
− t3y−1

1− t3y−1
(A.10)

This predicts the single trace partition function in the twisted sector to be,

Ztwisted
s.t. = − t3y

1− t3y
− t3y−1

1− t3y−1
+

vt2

1− vt2
(A.11)

Please note that, in this computation of the index, we have not subtracted any U(1)s.

A.2 Single-trace Index for the twisted sector

In this subsection, we calculate the index using the operators we know are protected at one-
loop.

A.2.1 Trφ! multiplet

The chiral multiplet Ē!(0,0) [18] is defined to be the multiplet that descends from the operator
with R = 0, that is anihilated by both Q1 and Q2. The shortening condition is ∆ = −!.

∆

! 0(0,0)

! + 1/2 1
2(0,± 1

2)
! + 1 0(0,±1), 1(0,0)

! + 3/2 1
2(0,± 1

2)
! + 2 0(0,0)

r −! −! + 1/2 −! + 1 −! + 3/2 −! + 2

(A.12)

From the above multiplet, the operators with δ = 0 are,
The operators with ! = 1 need to be treated more carefully as one should account for the

equation of motion with δ = 0. In stead, we use the single letter partition function for the
case of ! = 1. For ! > 1, we sum the contribution of the operators from the above table and
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KK reduction of (4,0) tensor multiplet on AdS5 × S1

Table shows correspondence of positive (k ≥ 1) KK modes of tensor multiplet with field
theory operators:
exact matching with Tr φ̄" multiplets, with " = k + 1.

Zero-modes on S1 match with TrM3 multiplet.

(From Gukov with minor modification for zero modes).
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Field Theory Gravity

Operator k U(1)r ∆ Mass Field KK

Tr[λλφ̄k−1] k ≥ 1 k 2 + k k2 − 4 ξi k

Tr[F 2φ̄k] k ≥ 0 k 4 + k k2 + 4k ξ k + 1

Tr[φ̄k] k ≥ 2 k k k2 − 4k ξ̄ k − 1

Tr[F φ̄k] k ≥ 1 k 2 + k k2 B−m̂n̂ k

Table 6: Matching of the positive KK modes

The process of removing the relative U(1) from the orbifold theory accompanies the
appearance of an additional protected multiplet, Tr[M3], in the twisted sector. In fact, this
new multiplet remains protected throughout the deformation of the orbifold to SCQCD. This
multiplet is indeed found to be protected only for SU(Nc) SCQCD theories as expected.

To summarize, tensor multiplet of the chiral (4, 0) supergravity matches with a protected
multiplet of both U(Nc) and SU(Nc) SCQCDs. In the former case it matches with the
singleton multiplet while it matches with Tr[M3] in the case of later.

4.2 Graviton Multiplet

The chiral (4, 0) theory of gravity contains the graviton multiplet, which after the addition of
branes i.e. after breaking USp(4) to SU(2)× U(1), contains

Gmn, B+i
mn, B+

mn, B̄−mn, 2ψI
µ (4.5)

We will show that this graviton multiplet matches with the protected multiplet Ĉ0(0,0).
The primary of this multiplet TrT correponds to the graviton Gmn with both of its indices on
the circle i.e. Gθθ. When both the indices of the graviton point in the AdS5 direction Gm̂n̂, it
corresponds to the stress energy tensor Tµν of the field theory. The oppositely charged self and
anti-self dual two forms in the Ĉ0(0,0) multiplet, map to B+

m̂n̂ and B̄−m̂n̂ of the gravity multiplet
respectively. As explained earlier, these forms with both the indices on the circle are zero and
the component with one index on the circle can be related to the remaining AdS5 part of the
two forms through duality.

The SU(2) R symmetry current of the field theory can be matched with the self-dual
two form B+i

m̂n̂ after dualizing it to a vector in AdS5. The remaining bosonic operator, the
U(1) R current, matches with Gm̂θ completing the correspondence of the bosonic zero modes.
Supersymmstry takes care of matching the fermionic zero modes to the fermionic operators
of Ĉ0(0,0).

5. Supergravity

The protected spectrum of N = 2 SCQCD suggests a six dimensional gravity dual with
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KK reduction of (4,0) tensor multiplet on AdS5 × S1

Table shows correspondence of positive (k ≥ 1) KK modes of tensor multiplet with field
theory operators: exact matching with Tr φ̄" multiplets, with " = k + 1.

Zero-modes on S1 match with TrM3 multiplet.

(From Gukov with minor modification for zero modes).
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twisted = f(t) +

∞∑

!=2

iφ! + iM3 = − t3y

1− t3y
− t3y−1

1− t3y−1
+

vt2

1− vt2
(A.16)

B. TrTφ! multiplet

This multiplet obeys the shortening condition F = C̄1 ∩ C̄2

(
Q̄1

)2 |F〉 =
(
Q̄1

)2 |Tφ!〉 = 0 (B.1)

and
(
Q̄2

)2 |F〉 =
(
Q̄2

)2 |Tφ!〉 = 0 (B.2)

and it is generated by the action of Q charges on the right and Q̄ on the left.

∆

2 + " 0(0,0)

5/2 + " 1
2( 1

2 ,0)
1
2(0, 12)

3 + " 0(1,0) 1( 1
2 , 12) , 0( 1

2 , 12) 0(0,1) , 1(0,0)

7/2 + " 1
2(1, 12)

1
2( 1

2 ,0) , 3
2( 1

2 ,0) , 1
2( 1

2 ,1)
1
2(0, 12)

4 + " 1(1,0) , 0(1,1) 0( 1
2 , 12) , 1( 1

2 , 12) 0(0,0)

9/2 + " 1
2(1, 12)

1
2( 1

2 ,0)

5 + " 0(1,0)

r −"− 1 −"− 1/2 −" −" + 1/2 −" + 1 −" + 3/2 −" + 2

To check that the multiplet is complete we count the degrees of freedom: The total must me
128 (bosons plus fermions). Furthermore, bosons and fermions must be equal in every line
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An interpolating family of super CFTs

N = 2 SCQCD can be viewed as a limit of a family of N = 2 SCFTs.

In opposite limit the family reduces to a well-known Z2 orbifold of N = 4 SYM

Start with N = 4 SYM: XAB, λA
α , Aµ, A, B SU(4)R indices

Pick SU(2)L × SU(2)R × U(1)r subgroup of SU(4)R

I,J = ± SU(2)R indices, Î, Ĵ = ±̂ SU(2)L indices

Geometrically, SU(2)L × SU(2)R ∼= SO(4) are 6789 rotations,
U(1)R ∼= SO(2) 45 rotations.
In R-space, orbifold by Z2 ⊂ SU(2)L, Z2 = {±I2×2}

(X6, X7, X8, X9)→ ±(X6, X7, X8, X9)

In color space, start with SU(2Nc) and declare non-trivial element of orbifold

Top-down: embedding in string theory
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SU(Nc) U(Nf ) SU(2)R U(1)r

QI
α 1 1 2 +1/2

SI α 1 1 2 −1/2
Aµ Adj 1 1 0
φ Adj 1 1 −1
λIα Adj 1 2 −1/2
QI ! ! 2 0
ψα ! ! 1 +1/2
ψ̃α ! ! 1 +1/2
M1 Adj + 1 1 1 0
M3 Adj + 1 1 3 0

Table 1: Symmetries of N = 2 SCQCD. We show the quantum numbers of the supercharges QI ,
SI , of the elementary components fields and of the mesonic operators M. Complex conjugate objects
(such as Q̄Iα̇ and φ̄) are not written explicitly.

which may be decomposed into into the SU(2)R singlet and triplet combinations

M1 ≡M I
I and M I

3J ≡M I
J −

1
2
M K

K δIJ . (2.2)

The operators M decompose into adjoint plus singlet representations of the color group
SU(Nc); the singlet piece is however subleading in the large Nc limit.

2.2 Z2 orbifold of N = 4 and interpolating family of SCFTs

N = 2 SCQCD can be viewed as a limit of a family of superconformal theories; in the opposite
limit the family reduces to a Z2 orbifold of N = 4 SYM. In this subsection we first describe
the orbifold theory and then its connection to N = 2 SCQCD.

As familiar, the field content of N = 4 SYM comprises the gauge field Aµ, four Weyl
fermions λA

α and six real scalars XAB, where A, B = 1, . . . 4 are indices of the SU(4)R R-
symmetry group. Under SU(4)R, the fermions are in the 4 representation, while the scalars
are in 6 (antisymmetric self-dual) and obey the reality condition5

X†
AB =

1
2
εABCDXCD . (2.3)

We may parametrize XAB in terms of six real scalars Xm, m = 4, . . . 9,

XAB =
1√
2





0 X4 + iX5 X7 + iX6 X8 + iX9

−X4 − iX5 0 X8 − iX9 −X7 + iX6

−X7 − iX6 −X8 + iX9 0 X4 − iX5

−X8 − iX9 X7 − iX6 −X4 + iX5 0




(2.4)

5The † indicates hermitian conjugation of the matrix in color space. We choose hermitian generators for
the color group.
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Next, we pick an SU(2)L × SU(2)R × U(1)r subgroup of SU(4)R,

1 +
2 −
3 +̂
4 −̂





SU(2)R × U(1)r

SU(2)L × U(1)∗r




. (2.5)

We use indices I,J = ± for SU(2)R (corresponding to A, B = 1, 2) and indices Î, Ĵ = ±̂
for SU(2)L (corresponding to A, B = 3, 4). To make more manifest their transformation
properties, the scalars are re-written as the SU(2)L × SU(2)R singlet Z (with charge −1
under U(1)r) and as the bifundamental XIÎ (neutral under U(1)r),

Z ≡ X4 + iX5√
2

, XIÎ ≡
1√
2

(
X7 + iX6 X8 + iX9

X8 − iX9 −X7 + iX6

)
. (2.6)

Note the reality condition X †
IÎ

= −εIJ εÎĴXJ Ĵ . Geometrically, SU(2)L × SU(2)R
∼= SO(4)

is the group of 6789 rotations and U(1)R
∼= SO(2) the group of 45 rotations. Diagonal SU(2)

transformations X → UXU−1 (UR = U, UL = U∗) preserve the trace, Tr[X ] = 2iX6, and thus
correspond to 789 rotations.

We are now ready to discuss the orbifold projection. In R-symmetry space, the orbifold
group is chosen to be Z2 ⊂ SU(2)L with elements ±I2×2. This is the well-known quiver theory
[] obtained by placing Nc D3 branes at the A1 singularity R2×R4/Z2, with (X6, X7, X8, X9)→
±(X6, X7, X8, X9) and X4 and X5 invariant. Supersymmetry is broken to N = 2, since the
supercharges with SU(2)L indices are projected out. The SU(4)R symmetry is broken to
SU(2)L×SU(2)R ×U(1)r, or more precisely to SO(3)L×SU(2)R ×U(1)r since only objects
with integer SU(2)L spin survive. The SU(2)R × U(1)r factors are the R-symmetry of the
unbroken N = 2 superconformal group, while SO(3)L is an extra global symmetry under
which the unbroken supercharges are neutral.

In color space, we start with gauge group SU(2Nc), and declare the non-trivial element
of the orbifold to be

τ ≡
(

INc×Nc 0
0 −INc×Nc

)
. (2.7)

All in all the Z2 action on the N = 4 fields is

Aµ → τAµτ , ZIJ → τZIJ τ , λI → τλIτ , XIÎ → −τXIÎτ , λÎ → −τλÎτ . (2.8)
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Next, we pick an SU(2)L × SU(2)R × U(1)r subgroup of SU(4)R,

1 +
2 −
3 +̂
4 −̂





SU(2)R × U(1)r

SU(2)L × U(1)∗r




. (2.5)

We use indices I,J = ± for SU(2)R (corresponding to A, B = 1, 2) and indices Î, Ĵ = ±̂
for SU(2)L (corresponding to A, B = 3, 4). To make more manifest their transformation
properties, the scalars are re-written as the SU(2)L × SU(2)R singlet Z (with charge −1
under U(1)r) and as the bifundamental XIÎ (neutral under U(1)r),

Z ≡ X4 + iX5√
2

, XIÎ ≡
1√
2

(
X7 + iX6 X8 + iX9

X8 − iX9 −X7 + iX6

)
. (2.6)

Note the reality condition X †
IÎ

= −εIJ εÎĴXJ Ĵ . Geometrically, SU(2)L × SU(2)R
∼= SO(4)

is the group of 6789 rotations and U(1)R
∼= SO(2) the group of 45 rotations. Diagonal SU(2)

transformations X → UXU−1 (UR = U, UL = U∗) preserve the trace, Tr[X ] = 2iX6, and thus
correspond to 789 rotations.

We are now ready to discuss the orbifold projection. In R-symmetry space, the orbifold
group is chosen to be Z2 ⊂ SU(2)L with elements ±I2×2. This is the well-known quiver theory
[] obtained by placing Nc D3 branes at the A1 singularity R2×R4/Z2, with (X6, X7, X8, X9)→
±(X6, X7, X8, X9) and X4 and X5 invariant. Supersymmetry is broken to N = 2, since the
supercharges with SU(2)L indices are projected out. The SU(4)R symmetry is broken to
SU(2)L×SU(2)R ×U(1)r, or more precisely to SO(3)L×SU(2)R ×U(1)r since only objects
with integer SU(2)L spin survive. The SU(2)R × U(1)r factors are the R-symmetry of the
unbroken N = 2 superconformal group, while SO(3)L is an extra global symmetry under
which the unbroken supercharges are neutral.

In color space, we start with gauge group SU(2Nc), and declare the non-trivial element
of the orbifold to be

τ ≡
(

INc×Nc 0
0 −INc×Nc

)
. (2.7)

All in all the Z2 action on the N = 4 fields is

Aµ → τAµτ , ZIJ → τZIJ τ , λI → τλIτ , XIÎ → −τXIÎτ , λÎ → −τλÎτ . (2.8)
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IÎ
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Aµ → τAµτ , ZIJ → τZIJ τ , λI → τλIτ , XIÎ → −τXIÎτ , λÎ → −τλÎτ . (2.8)
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The components that survive the projection are

Aµ =

(
Aa

µb 0
0 Ǎǎ

µb̌

)
(2.9)

Z =

(
φa

b 0
0 φ̌ǎ

b̌

)
(2.10)

λI =

(
λa
Ib 0
0 λ̌ǎ

I b̌

)
(2.11)

λÎ =

(
0 ψa

Îǎ

ψ̃b̌
Îb

0

)
(2.12)

XIÎ =

(
0 Q a

IÎǎ

−εIJ εÎĴ Q̄b̌Ĵ J
b 0

)
. (2.13)

The gauge group is broken to SU(Nc)×SU(Nč)×U(1), where the U(1) factor is the relative6

U(1) generated by τ (equ.(2.7)): it must be removed by hand, since its beta function is
non-vanishing. The process of removing the relative U(1) modifies the scalar potential by
double-trace terms, which arise from the fact that the auxiliary fields (in N =∞ superspace)
are now missing the U(1) component. Equivalently we can evaluate the beta function for the
double-trace couplings, and tune them to their fixed point [].

Supersymmetry organizes the component fields into the N = 2 vector multiplets of each
factor of the gauge group, (φ, λI , Aµ) and (φ̌, λ̌I , Ǎµ), and into two bifundamental hypermulti-
plets, (QI,+̂, ψ+̂, ψ̃+̂) and (QI,−̂, ψ−̂, ψ̃−̂). Table 2 summarizes the field content and quantum
numbers of the orbifold theory.

The two gauge-couplings gY M and ǧY M can be independently varied while preserving
N = 2 superconformal invariance, thus defining a two-parameter family of N = 2 SCFTs.
Some care is needed in adjusting the Yukawa and scalar potential terms so that N = 2
supersymmetry is preserved. We find

LY ukawa(gY M , ǧY M ) = i
√

2Tr
[
− gY M εIJ λ̄I λ̄J φ− ǧY M εIJ ¯̌λI ¯̌λJ φ̌

+gY M εÎĴ ψ̃ÎφψĴ + ǧY M εÎĴψĴ φ̌ψ̃Î

+gY M εÎĴ ψ̃Ĵ λIQIÎ + ǧY M εÎĴQIÎ λ̌
Iψ̃Ĵ

−gY M εIJ Q̄Ĵ IλJψĴ − ǧY M εIJψĴ λ̌IQ̄Ĵ J ]
+ h.c. (2.14)

V(gY M , ǧY M ) = g2
Y MTr

[1
2
[φ̄, φ]2 +M I

I (φφ̄ + φ̄φ) +M J
I M

I
J −

1
2
M I

I M J
J

]

+ǧ2
Y MTr

[1
2
[ ¯̌φ, φ̌]2 + M̌I

I(φ̌
¯̌φ + ¯̌φφ̌) + M̌I

J M̌J
I −

1
2
M̌I

IM̌J
J

]

+gY M ǧY MTr
[
− 2QIÎ φ̌Q̄ÎI φ̄ + h.c.

]
− 1

Nc
Vd.t. , (2.15)

6Had we started with U(2Nc) group, we would also have an extra diagonal U(1), which would completely
decouple since no fields are charged under it.
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µb̌

)
(2.9)

Z =

(
φa

b 0
0 φ̌ǎ
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I b̌

)
(2.11)

λÎ =
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− 2QIÎ φ̌Q̄ÎI φ̄ + h.c.

]
− 1

Nc
Vd.t. , (2.15)

6Had we started with U(2Nc) group, we would also have an extra diagonal U(1), which would completely
decouple since no fields are charged under it.

– 9 –

An interpolating family of super CFTs

N = 2 SCQCD can be viewed as a limit of a family of N = 2 SCFTs.

In opposite limit the family reduces to a well-known Z2 orbifold of N = 4 SYM

Start with N = 4 SYM: XAB, λA
α , Aµ, A, B SU(4)R indices

Pick SU(2)L × SU(2)R × U(1)r subgroup of SU(4)R

I,J = ± SU(2)R indices, Î, Ĵ = ±̂ SU(2)L indices

Geometrically, SU(2)L × SU(2)R ∼= SO(4) are 6789 rotations,
U(1)R ∼= SO(2) 45 rotations.
In R-space, orbifold by Z2 ⊂ SU(2)L, Z2 = {±I2×2}

(X6, X7, X8, X9)→ ±(X6, X7, X8, X9)

In color space, start with SU(2Nc) and declare non-trivial element of orbifold

Top-down: embedding in string theory
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Geometrically, SU(2)L × SU(2)R ∼= SO(4) are 6789 rotations,
U(1)R ∼= SO(2) 45 rotations.
In R-space, orbifold by Z2 ⊂ SU(2)L, Z2 = {±I2×2}

(X6, X7, X8, X9)→ ±(X6, X7, X8, X9)

In color space, start with SU(2Nc) and declare non-trivial element of orbifold

Two gauge-couplings gY M and ǧY M can be independently varied
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SU(Nc)1 SU(Nc)2 SU(2)R SU(2)L U(1)R

QI
α 1 1 2 1 +1/2

SI α 1 1 2 1 –1/2
Aµ Adj 1 1 1 0
Ǎµ 1 Adj 1 1 0
φ Adj 1 1 1 –1
φ̌ 1 Adj 1 1 –1
λI Adj 1 2 1 –1/2
λ̌I 1 Adj 2 1 –1/2

QIÎ ! ! 2 2 0
ψÎ ! ! 1 2 +1/2
ψ̃Î ! ! 1 2 +1/2

Table 2: Symmetries of the Z2 orbifold of N = 4 SYM and of the interpolating family of N = 2
SCFTs.

where the mesonic operators M are defined as7

M Ia
J b ≡

1√
2
Qa
J Ĵ ǎ

Q̄Ĵ Iǎ
b , M̌Iǎ

J b̌
≡ 1√

2
Q̄Ĵ Iǎ

aQ
a
J Ĵ b̌

, (2.16)

and the double-trace terms in the potential are

Vd.t. = g2
Y M

(
Tr[M J

I ]Tr[M I
J ]− 1

2
Tr[M I

I ]Tr[M J
J ]

)
(2.17)

+ǧ2
Y M

(
Tr[M̌I

J ]Tr[M̌J
I ]−

1
2
Tr[M̌I

I ]Tr[M̌J
J ]

)

=
(
g2
Y M + ǧ2

Y M

)(
Tr[M J

I ]Tr[M I
J ]− 1

2
Tr[M I

I ]Tr[M J
J ]

)
.

The SU(2)L symmetry is present for all values of the couplings (and so is the SU(2)R ×
U(1)r R-symmetry, of course). At the orbifold point gY M = ǧY M there is an extra Z2 sym-
metry (the quantum symmetry of the orbifold) acting as

φ↔ φ̌ , λI ↔ λ̌I , Aµ ↔ Ǎµ , ψÎ ↔ ψ̃Î , QIÎ ↔ −εIJ εÎĴ Q̄J Ĵ . (2.18)

Setting ǧY M = 0, the second vector multiplet (φ̌, λ̌I , Ǎµ) becomes free and completely
decouples from the rest of theory, which happens to coincide with N = 2 SCQCD (indeed
the field content is the same and N = 2 susy does the rest). The SU(Nĉ) symmetry can
now be interpreted as a global flavor symmetry. In fact there is a symmetry enhancement
SU(Nč) × SU(2)L → U(Nf = 2Nc): one sees in (2.14, 2.15) that for ǧY M = 0 the SU(Nǎ)
index ǎ and the SU(2)L index Î can be combined into a single flavor index i ≡ (ǎ, Î) =
1, . . . 2Nc.

7Note that Tr[M J
I ] = Tr[M̌J

I ].
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are now missing the U(1) component. Equivalently we can evaluate the beta function for the
double-trace couplings, and tune them to their fixed point [].

Supersymmetry organizes the component fields into the N = 2 vector multiplets of each
factor of the gauge group, (φ, λI , Aµ) and (φ̌, λ̌I , Ǎµ), and into two bifundamental hypermulti-
plets, (QI,+̂, ψ+̂, ψ̃+̂) and (QI,−̂, ψ−̂, ψ̃−̂). Table 2 summarizes the field content and quantum
numbers of the orbifold theory.

The two gauge-couplings gY M and ǧY M can be independently varied while preserving
N = 2 superconformal invariance, thus defining a two-parameter family of N = 2 SCFTs.
Some care is needed in adjusting the Yukawa and scalar potential terms so that N = 2
supersymmetry is preserved. We find

LY ukawa(gY M , ǧY M ) = i
√

2Tr
[
− gY M εIJ λ̄I λ̄J φ− ǧY M εIJ ¯̌λI ¯̌λJ φ̌

+gY M εÎĴ ψ̃ÎφψĴ + ǧY M εÎĴψĴ φ̌ψ̃Î

+gY M εÎĴ ψ̃Ĵ λIQIÎ + ǧY M εÎĴQIÎ λ̌
Iψ̃Ĵ

−gY M εIJ Q̄Ĵ IλJψĴ − ǧY M εIJψĴ λ̌IQ̄Ĵ J ]
+ h.c. (2.14)

V(gY M , ǧY M ) = g2
Y MTr

[1
2
[φ̄, φ]2 +M I

I (φφ̄ + φ̄φ) +M J
I M

I
J −

1
2
M I

I M J
J

]

+ǧ2
Y MTr

[1
2
[ ¯̌φ, φ̌]2 + M̌I

I(φ̌
¯̌φ + ¯̌φφ̌) + M̌I

J M̌J
I −

1
2
M̌I

IM̌J
J

]

+gY M ǧY MTr
[
− 2QIÎ φ̌Q̄ÎI φ̄ + h.c.

]
− 1

Nc
Vd.t. , (2.15)

6Had we started with U(2Nc) group, we would also have an extra diagonal U(1), which would completely
decouple since no fields are charged under it.
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An interpolating family of super CFTs

N = 2 SCQCD can be viewed as a limit of a family of N = 2 SCFTs.

In opposite limit the family reduces to a well-known Z2 orbifold of N = 4 SYM

Start with N = 4 SYM: XAB, λA
α , Aµ, A, B SU(4)R indices

Pick SU(2)L × SU(2)R × U(1)r subgroup of SU(4)R

I,J = ± SU(2)R indices, Î, Ĵ = ±̂ SU(2)L indices

Geometrically, SU(2)L × SU(2)R ∼= SO(4) are 6789 rotations,
U(1)R ∼= SO(2) 45 rotations.
In R-space, orbifold by Z2 ⊂ SU(2)L, Z2 = {±I2×2}

(X6, X7, X8, X9)→ ±(X6, X7, X8, X9)

In color space, start with SU(2Nc) and declare non-trivial element of orbifold

Two gauge-couplings gY M and ǧY M can be independently varied

17
while preserving N = 2 superconformal invariance

For ǧY M → 0, recover N = 2 SCQCD ⊕ decoupled SU(Nč) vector multiplet

For ǧY M = 0, global symmetry enhancement SU(Nč)× SU(2)L → U(Nf = 2Nc):
(ǎ, Î) ≡ i = 1, . . . Nf = 2Nc

c = a =
N 2

c

2

along the whole marginal deformation
For ǧY M = 0, interpret as

a =

(
7
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)
N 2
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Spin-chain for interpolating family

Very interesting dynamics.

S-matrix factorizes into “left” and “right”

Yang-Batxter fails for ǧ != g, but holds again for ǧ = 0!

“Dimeric” excitations T (p), T̃ (p) emerge smoothly as bound states

19

H =





φpφq QIÎQ̄
Ĵ J

φp′φq′ g2(2δp
p′δ

q
q′ + gpqgp′q′ − 2δp

q′δ
q
p′) g2δJI δĴ

Î
gp′q′

Q̄Î′I′
QJ ′Ĵ ′ g2δI

′
J ′δÎ

′

Ĵ ′g
pq g2(2δI

′
I δJJ ′ − δJI δI

′
J ′)δĴÎ δÎ

′

Ĵ ′ + 2ǧ2δJI δI
′

J ′δÎ
′

Î δĴ
Ĵ ′





⊕





φ̌pφ̌q Q̄Ĵ JQIÎ

φ̌p′ φ̌q′ ǧ2(2δp
p′δ

q
q′ + gpqgp′q′ − 2δp

q′δ
q
p′) ǧ2δJI δĴ

Î
gp′q′

QJ ′Ĵ ′Q̄Î′I′
ǧ2δI

′
J ′δÎ

′

Ĵ ′g
pq ǧ2(2δI

′
I δJJ ′ − δJI δI

′
J ′)δĴÎ δÎ

′

Ĵ ′ + 2g2δJI δI
′

J ′δÎ
′

Î δĴ
Ĵ ′





⊕
(

φpQIÎ QIÎ φ̌
p

φp′Q̄Î′I′ 2g2δI
′

I δÎ
′

Î δp
p′ −2gǧδI

′
I δÎ

′

Î δp
p′

Q̄Î′I′
φ̌p′ −2gǧδI

′
I δÎ

′

Î δp
p′ 2ǧ2δI

′
I δÎ

′

Î δp
p′

)

⊕





φ̌pQ̄Ĵ J Q̄Ĵ J φp

φ̌p′QJ ′Ĵ ′ 2ǧ2δJJ ′δ
Ĵ
Ĵ ′δ

p
p′ −2gǧδJJ ′δ

Ĵ
Ĵ ′δ

p
p′

QJ ′Ĵ ′φp′ −2gǧδJJ ′δ
Ĵ
Ĵ ′δ

p
p′ 2g2δJJ ′δ

Ĵ
Ĵ ′δ

p
p′





In concise form, 10

Hk,k+1 =

0

BBBBBBBBBBBBB@

φφ QQ̄ φ̌φ̌ Q̄Q φQ Qφ̌ φ̌Q̄ Q̄φ

φφ g2(2 + K− 2P) g2K 0 0 0 0 0 0
QQ̄ g2K g2(2− K)K̂ + 2ǧ2K 0 0 0 0 0 0
φ̌φ̌ 0 0 ǧ2(2 + K− 2P) ǧ2K 0 0 0 0
Q̄Q 0 0 ǧ2K ǧ2(2− K)K̂ + 2g2K 0 0 0 0
φQ 0 0 0 0 2g2 −2gǧ 0 0
Qφ̌ 0 0 0 0 −2gǧ 2ǧ2 0 0
φ̌Q̄ 0 0 0 0 0 0 2ǧ2 −2gǧ
Q̄φ 0 0 0 0 0 0 −2gǧ 2g2

1

CCCCCCCCCCCCCA

A comprehensive analysis of this spin chain will appear in a separate paper [].

10The meaning of the different operators can be read off by comparing with the explicit form above. Note
in particular that to avoid cluttering we have dropped the identity symbol I (terms proportional to unity are
proportional to the identity in the respective spaces). Also in the subspaces QQ̄, Q̄Q we use the notation K
for the trace operator acting on SU(2)R indices and K̂ that acts on the SU(2)L indices.
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8.5.1 Q̄Q sector

Till now, we have been considering the vacuum that is made out of φ fields. That has

determined the sequence in which the impurities Q and Q̄ can appear viz. Q̄ can only come

after Q.

But in general, if one wants to study many body problem, we have to allow for the

sequence Q̄Q. As a simplest case, we consider the two body problem where the vacuum is

made out of φ̌ fields. The impurities now appear in the reverse order.

The same exercise can be repeated for this case. Each step is the same as previous with

interchange of g1 and g2. Hence, for the case of Q̄Q two body scattering matrix SQ̄Q we have

in every sector,

SQ̄Q(p1, p2, g) = SQQ̄(p1, p2,
1

g
) (8.40)

It is clear that it factorizes into SL and SR in the same way as SQQ̄ with g replaced by 1
g .

9. Yang Baxter Equation

With the factorized scattering matrix above, let us check the Yang Baxter equation separately

in each sector. As a beginning let us consider a general problem of above type.

=

p1 p2 p3 p1 p2 p3

I J K I J K

I ′

J ′

I ′′ J ′′ K′′ I ′′ J ′′ K′′

L L

K′

J ′

Figure 3: Yang Baxter equation for Orbifold theory

The above diagram gives the following equation to be verified,

SI′J ′

IJ (p1, p2)Š
LK′′

J ′K (p1, p3)S
I′′J ′′

I′L (p2, p3) = ŠJ ′′K′′

LK′ (p1, p2)S
I′′L
IJ ′ (p1, p3)Š

J ′K′

JK (p2, p3) (9.1)

Let us simplify both sides separately, with the substitution,

SI′J ′

IJ = AδI
′

I δJ
′

J + BgIJ gI
′J ′

(9.2)

ŠI′J ′

IJ = ǍδI
′

I δJ
′

J + B̌gIJ gI
′J ′

(9.3)
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SU(2)L SL(p1, p2, κ) SU(2)R SR(p1, p2, κ)

1L S(p1, p2, κ− 1
κ) 1R S−1(p1, p2, κ)

3L S(p1, p2, κ) 3R −1

Spin-chain for interpolating family

Spin-chain has very interesting dynamics.

Magnon S-matrix factorizes into “left” and “right”

SQQ̄(p1, p2, κ) = −SL(p1, p2, κ)SR(p1, p2, κ)

S(p1, p2, κ) ≡ −1− 2κeip1 + ei(p1+p2)

1− 2κeip2 + ei(p1+p2)

κ ≡ ǧ/g.
Yang-Baxter fails for ǧ #= g, but holds again for ǧ = 0!

“Dimeric” excitations T (p), T̃ (p) andM3 emerge smoothly as bound states as ǧ → 0
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22

SU(2)L SL(p1, p2, κ) SU(2)R SR(p1, p2, κ)

1L S(p1, p2, κ− 1
κ) 1R S−1(p1, p2, κ)

3L S(p1, p2, κ) 3R −1

Spin-chain for interpolating family

Spin-chain has very interesting dynamics.

Magnon S-matrix factorizes into “left” and “right”

SQQ̄(p1, p2, κ) = −SL(p1, p2, κ)SR(p1, p2, κ)

S(p1, p2, κ) ≡ −1− 2κeip1 + ei(p1+p2)

1− 2κeip2 + ei(p1+p2)

κ ≡ ǧ/g.
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Interpolating theory has vastly more protected “closed” states than N = 2 SCQD:

towers of states with arbitrary high (and equal) SU(2)L and SU(2)R spins

For ǧ → 0, they are re-interpreted as multiparticle states of short open strings

20



Top-down: embedding in string theory

Well–known realizations of interpolating SCFT in string theory.

Z2 orbifold of N = 4 SYM realized on Nc D3 branes on R4/Z2)× R2
Douglas Moore

Near-horizon geometry is the familiar background AdS5 × S5/Z2 Kachru-Silverstein

Varying relative couplings corresponds to changing period of BNS on collapsed S2:

at orbifold point g = ǧ and
∫

S2 BNS = 1/2.

As ǧ → 0,
∫

BNS → 0: singular Calabi-Yau.
More useful to T-dualize to Hanany-Witten setup in Type IIA:

Two stacks of Nc D4s suspended between two NS5 branes

NS5 012345
D4 0123 6

with x6 ∼ x6 + 2πR6.
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More useful to T-dualize to Hanany-Witten setup in Type IIA:

Two stacks of Nc D4s suspended between two NS5 branes

NS5 012345
D4 0123 6

with x6 ∼ x6 + 2πR6.

Interpolating family of theories parametrized by γ = L6/R6,
where L6 is the distance between the two NS5s.

• For γ = π, Z2 orbifold of N = 4 SYM:

Varying γ, exactly marginal deformation of the Z2 orbifold.

Two gauge couplings

1

g2
=

γR6

gsls

1

ǧ2
=

(2π − γ)R6

gsls
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Two gauge couplings

1

g2
=

γR6

gsls

1

ǧ2
=

(2π − γ)R6

gsls

1

g2
+

1

ǧ2
=

2πR6

gsls

ǧ2

g2
=

γ

2π − γ
.

Decoupling limit
gs → 0 , ls → 0 , R6 → 0

with g, ǧ fixed.

Hierarchy of scales
L# ls # R6 ≥ L6 ≡ γR6

where L is the length above which field theory description is valid.
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• T duality around x6: Nc D3 branes on

2-center Taub-Nut ×R2 R6→0−→ R4/Z2 × R2.

The angle γ is mapped to the BNS flux the on collapsed S2,
∫

S2
BNS =

γ

2π

Indeed
∫

BNS = 1/2 at the CFT orbifold point Aspinwall

Note also that

gIIB
s =

ls
R6

gIIA
s = g2γ

27



As γ → 0, we can focus on local singularity.

Precisely in the limit we are interested in, correct description of the two NS5 branes is
in terms of

8d non-critical string theory

with exact CFT (after an angular T-duality) R(5,1) × SL(2)2/U(1) Giveon-Kutasov

Susy coset SL(2)k/U(1) has c = 6 for k = 2
Perfectly smooth description.

Recall that for k NS5 branes on a circle double-scaling limit gives
The piece of the geometry which is “lost” in 10d→ 8d is the SU(2)/U(1) factor of the CFT,
which has c = 0 for k = 2 NS5s.

Holographically the loss of a piece of the geometry is interpreted as the decoupling of
the extra vector multiplet.
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Susy coset SL(2)k/U(1) has c = 6 for k = 2
Perfectly smooth description.

Recall that for k NS5 branes on a circle double-scaling limit gives (SL(2)k/U(1)× SU(2)k/U(1))/Zk

The piece of the geometry which is “lost” in 10d→ 8d is the SU(2)/U(1) factor of the CFT,
which has c = 0 for k = 2 NS5s.

Holographically the loss of a piece of the geometry (and of associated KK tower) gets
related to the decoupling of the extra vector multiplet and restriction to SU(2)L singlets.
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Symmetry enhancement in cigar CFT for k = 2:
circle at free-fermion radius, SU(2) × SU(2) current algebra, broken to the diagonal
SU(2) by cigar interaction:
interpreted as 789 rotations in HW setup

Nice understanding of D-branes on the SL(2)/U(1) cigar CFT
Israel-Pakman-Troost, Ashok-Murthy-Troost, Fotopulos-Niarchos-Prezas, . . .

Compact (“color”) D4s → branes localized at the tip of the cigar, filling R(3,1) ⊂ R(5,1)

Non-compact (“flavor”) D4s → branes filling the cigar and R(3,1) ⊂ R(5,1)
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circle at free-fermion radius, SU(2) × SU(2) current algebra, broken to the diagonal
SU(2) by cigar interaction:
interpreted as 789 rotations in HW setup

Nice understanding of D-branes on the SL(2)/U(1) cigar CFT
Israel-Pakman-Troost, Ashok-Murthy-Troost, Fotopulos-Niarchos-Prezas, . . .

Compact (“color”) D4s → branes localized at the tip of the cigar, filling R(3,1) ⊂ R(5,1)

Non-compact (“flavor”) D4s → branes filling the cigar and R(3,1) ⊂ R(5,1)

Precisely for Nf = 2Nc the dilaton tadpole of combined brane system cancels Murthy Troost
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We are interested in the background after the backreaction of the branes.

Exact RR σ model still not known. Plausible ansatz:

ds2 = f (α)

[
dr2

r2
+ r2dxµdxµ

]
+ dα2 + g(α)dθ2 + h(α)dϕ2

with θ 45 angle, ϕ cigar angle, r2 = r2
45 + r2

cigar, tan α = r45/rcigar.

Expect f ∼ g " h ∼ l2s for generic α, and g(α = 0) = 0.

(Note that before backreaction D5 (“flavor”) branes wrap ϕ and are localized at α = 0).

General features seem to match nicely bottom-up expectations:

• R-symmetry:
U(1)r symmetry from 45 isometry (large circle which gives KK modes),
SU(2)R comes stringy cigar symmetry (SU(2)R gauge-fields only)

• Spacetime susy: cigar ×R(5,1) has (4, 0) (16 supercharges) on Minkowski directions
Branes break 1/2, near-horizon doubles again to 16 Supercharges = 8 Q + 8 S
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• Closed string spectrum on non-critical IIB on R(5,1) × SL(2)2/U(1):
(i) Normalizable modes localized at tip of the cigar:
6d tensor (4, 0) multiplet↔ {Trφl, TrM3 }

(ii) Delta-function normalizable modes propagating in the bulk.
Naively “massive”, but lowest modes on S1 of cigar (e.g. graviton) have in fact “mass-
less” 7d gauge invariance

Richer spectrum that just 6d graviton multiplet. Its KK reduction on large S1 should
match with {TrTφ" } , but need back-reacted geometry
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Explanation of the anomaly puzzle?

• For the whole interpolating family, c = a after all!

As ǧ → 0, second vector multiplet becomes free but still contributes to the anomaly.
In the dual bulk theory it must correspond to ∼ N 2

c decoupled “singleton” d.o.f.

So if we keep the spectator vector multiplet, it is consistent to assume that the dual
theory has standard Einstein-Hilbert term in AdS5.

• Alternatively, we may wish to discuss the theory!"#$  %#decoupled vector multiplet.

Speculation: integrating out the singletons generate the Chern-Simons term (and its
susy completion) that contributed to c− a.
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Conclusions

Natural speculation:

4d QFTs with lower (genuinely) lower susy are holographic to non-critical strings

N = 4: 10d, critical case Maldacena

N = 2: 8d (this talk)

N = 1: 6d Klebanov Maldacena

N = 0: 5d? Polyakov

We gave evidence forN = 2 case, in simplest theory beyond “N = 4 universality class”:

Bottom-up (one-loop hamiltonian, superconformal representation theory)
and the top-down (string theory) suggest duality

N = 2 SYM SCQCD ↔ non-critical 8d IIB string theory with large AdS5 × S1
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Still a lot of work to do!

• Integrability of our spin chain (for ǧ = 0)? asymptotic Bethe ansatz?

• Magnon S-matrix from dual sigma model
Certainly doable around orbifold point. Integrability not essential for comparison.

• Transition between critical and non-critical string

• Precise σ model with RR flux:
from supercoset construction?

• Implications for N = 1 SQCD?

• . . . . . .

Many new possibilities.
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