WHAT IS THE COMPLEXITY OF WEAKLY SINGULAR INTEGRAL EQUATIONS?

GENNADI VAINIKKO AND ARVET PEDAS

Institute of Applied Mathematics, Tartu University

Liivi 2, 50409, Tartu, Estonia

E-mail: gen@ut.ee

Consider the integral equation

$$u(x) = \int_0^1 (a(x,y) \mid x - y \mid^{-\nu} + b(x,y))u(y)dy + f(x), \ 0 \le x \le 1,$$
 (1)

where $\nu \in (0,1)$, $f \in C^m[0,1]$, $a,b \in C^{2m}([0,1] \times [0,1])$, $m \in \mathbb{N}$, and the corresponding homogeneous equation has only the trivial solution. By a fast (C,C^m) solver of (1) we mean a solver which produces approximate solutions u_n , $n \in \mathbb{N}$, such that

• given the values of a, b and f at certain not more than n_{\star} points depending on the solver (with $n_{\star} \to \infty$ as $n \to \infty$), the parameters of u_n can be determined at the cost of $\gamma_m n_{\star}$ arithmetical operations, and an accuracy

$$||u - u_n||_{C[0,1]} \le c_m n_{\star}^{-m} ||f||_{C^m[0,1]}$$
 (2)

is achieved where u is the solution of (1);

• having the parameters of u_n in hand, the value of u_n at any point $x \in [0,1]$ is available at the cost of γ'_m operations.

Here the constants c_m , γ_m , γ'_m are independent of f and n. It occurs that estimate (2) is information optimal – in the worst case, under above assumptions, a higher order of error estimate cannot be achieved allowing more arithmetical work.

In a fast (L^p, C^m) solver, $\|u - u_n\|_{L^p(0,1)} \le c_m n_\star^{-m} \|f\|_{C^m[0,1]}$ is required instead of (2). In a quasifast (C, C^m) solver, $\|u - u_n\|_{C[0,1]} \le c_m n_\star^{-m} \log n_\star \|f\|_{C^m[0,1]}$ is required instead of (2).

In the literature, fast (C,C^m) solvers have been constructed only for integral equations without singularities that for (1) corresponds to the case $a\equiv 0$. We consider (1) in general case and construct a solver which is (C,C^m) quasifast and (L^p,C^m) fast for $1\leq p<\infty$; under slightly strengthened smoothness assumptions that the mth derivatives of a and b are Hoelder continuous, this solver is also (C,C^m) fast. Hence the complexity of (1) is the same as that for integral equations with smooth kernels or close to it. Actually some boundary singularities of $a,b\in C^{2m}([0,1]\times(0,1))$ and $f\in C[0,1]\cap C^m(0,1)$ are allowed in the final formulations.