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Abstract

We introduce the classical concept of uniform material
through groupoids and frame bundles. We also give an
equivalent framework for Functionally Graded Media de-
scribing some properties relative to their homogeneity.
Later, we focus on elastic materials, solids and fluids. This
poster is based on the preprint [1].

Part I

Geometric Structures

1. Groupoids

Definition 1.1. Given two sets Ω and M , a groupoid Ω over
M , the base, consists of these two sets together with two
maps α, β : Ω → M , called the source and the target pro-
jections, and a composition law satisfying the following con-
ditions:
1. The composition law is defined only for those η, ξ ∈ Ω

such that α(η) = β(ξ) and, in this case, α(ηξ) = α(ξ) and
β(ηξ) = β(η). We will denote Ω∆ the set of such pairs of
elements.

2. The composition law is associative, that is ζ(ηξ) = (ζη)ξ
for those ζ, η, ξ ∈ Ω such that one of the members of the
previous equality is well defined.

3. For each x ∈ M there exists an element 1x ∈ Ω, called
the unity over x, such that

(a) α(1x) = β(1x) = x;
(b) η · 1x = η, whenever α(η) = x;
(c) 1x · ξ = ξ, whenever β(ξ) = x.

4. For each ξ ∈ Ω there exists an element ξ−1 ∈ Ω, called
the inverse of ξ, such that

(a) α(ξ−1) = β(ξ) and β(ξ−1) = α(ξ);
(b) ξ−1ξ = 1α(ξ) and ξξ−1 = 1β(ξ).

The groupoid Ω will be said transitive if, for every pair
x, y ∈ M , the set of elements that have x as source and
y as target, i.e. Ωx,y := α−1(x) ∩ β−1(y), is not empty.
A subset Ω′ ⊂ Ω is said to be a subgroupoid of Ω over M if
itself is a groupoid over M with the restriction of the struc-
tural maps of Ω.

Figure 1: The arrow picture.

Definition 1.2. We say that a groupoid Ω over M is a dif-
ferential groupoid if the groupoid Ω and the base M are
endowed by respective differential structures such that:
1. the source and the target projections α, β : Ω → M are

smooth surjective submersions;
2. the unity or inclusion map i : x ∈ M 7→ 1x ∈ Ω is smooth;
3. and the composition law, defined on Ω∆, is smooth.
Additionally if Ω is transitive, then we call it a Lie groupoid.
A subgroupoid Ω′ of a differential groupoid Ω which is in turn
a differential groupoid with the restricted differential struc-
ture is called a differential subgroupoid.
Example 1.3. • The frame groupoid of a smooth manifold,

Π(M) =
⋃

x,y∈M

Iso(TxM, TyM). (1.1)

• The unimodular groupoid of a smooth manifold with re-
spect to a volume form (or density) ρ,

U(M) = det−1
ρ (±1), (1.2)

• The orthogonal groupoid of a Riemannian manifold,

O(M) =
{

A ∈ Π(M) : A−1 = AT
}

. (1.3)

These groupoids are Lie and, whenever they are well de-
fined, we have the relations:

O(M) ≤ U(M) ≤ Π(M). (1.4)

2. G-structures

Definition 2.1. Given a smooth manifold M , a G-structure
G(M) is a G-reduction of the frame bundle FM .
Note that there may be different G-structures with the same
structure group. Once it is fixed, the linear frames that lie
in the G-structure are called adapted or distinguished ref-
erences. As an example of G-structure, consider the set of
orthonormal references of a Riemannian manifold (Mn, g).
This set is a O(n)-reduction of FM and, in fact, any O(n)-
structure on M is equivalent to a Riemannian structure (see
[4]).
Proposition 2.2 (cf. [6]). Let Ω be a Lie groupoid over a
smooth manifold M with source and target projections α
and β, respectively. Given any point x ∈ B, we have that:
1. Ωx,x is a Lie group and

2. Ωx = α−1(x) is a principal Ωx,x-bundle over B whose
canonical projection is the restriction of β.

Any reference z at some point x of a smooth n-manifold
M may be seen as the linear mapping ei ∈ Rn 7→ vi ∈
TxM , where (e1, . . . , en) is the canonical basis of Rn and
(v1, . . . , vn) the basis defined by z.
Theorem 2.3 (cf. [6]). Given a smooth n-dimensional man-
ifold M , let Ω be a Lie subgroupoid of the frame groupoid
Π(M) and denote by α and β the respective source and tar-
get projections of Ω. We have that for any point x ∈ M and
any frame reference z ∈ FM at x:
1. Gz := z−1 · Ωx,x · z is a Lie subgroup of Gl(n) and

2. the set Ωz of all the linear frames obtained by translating
z by Ωx, that is

Ωz =
{
gx,y · z : gx,y ∈ Ωx

}
, (2.1)

is a Gz-structure on M .
Theorem 2.4 (cf. [1]). Let ω be a G-structure over an n-
dimensional smooth manifold M , then the set

Ω =
{

A ∈ Π(M) : Az ∈ ω ∀z ∈ ωα(A)

}
, (2.2)

where Π(M) is the frame groupoid of M and α the source
projection, is a Lie soubgroupoid of Π(M). Furthermore, for
any reference frame z ∈ ω, the G-structure associated to Ω
and given by theorem 2.3 coincides with ω, i.e.

Ωz = ω and Gz = G. (2.3)

Proposition 2.5. Let M be a manifold. If Ω and Ω̃ are two
subgroupoids of the frame groupoid Π(M), then their inter-
section Ω̂ := Ω ∩ Ω̃ is again a subgroupoid of Π(M) (and of
the original ones). Furthermore, if they are Lie groupoids,
then we have the following relations:

Ω̂z = Ωz ∩ Ω̃z and Ĝz = Gz ∩ G̃z, (2.4)

where z ∈ FM is a fixed frame and Ωz, Ω̃z, Ω̂z, Gz, G̃z and
Ĝz are the respective G-structures and structural groups.
Definition 2.6. A G-structure G(M) over a manifold M is
said to be integrable if there exists an atlas {(Uα, φα)}α∈A
of the base manifold, such that the induced cross-sections
σα(x) := (Txφα)−1 take values in G(M).

Part II

Continuum Mechanics

3. The Constitutive Equation

In the more general sense (see [7], for instance), a body is
a smooth manifold Bn that can be embedded in a Rieman-
nian manifold (Sn, g), the ambient space. Usually, the body
B is a simply connected open set of Rn and the ambient
space is Rn itself with the standard metric. Each embed-
ding K : B → S is called a configuration and its tangent
map TK : TB → TS is called an infinitesimal configura-
tion. If we fix a configuration Kr (the reference configu-
ration) and we pick an arbitrary configuration K, then the
embedding compositon φ = K ◦ K−1

r : Kr(B) ⊂ S → S is
considered as a body deformation and we call the infinites-
imal deformation Tφ the deformation gradient, usually de-
noted by F . Since (S, g) is a Riemannian manifold, we can
induce a riemmanian metric on B by the pull-back of g by
the reference configuration Kr. Thus, the metric on B is not

canonical, since it depends on the chosen reference config-
uration. In the case of solid materials, we are able to define
canonically a Riemannian metric on them (section §6).

Figure 2: Deformation in a reference configuration.

As stated by the principle of determinism, the mechanical
and thermal behaviors of a material are determined by a
relation called the constitutive equation. In our case of inte-
rest, elastic materials, the constitutive equation establishes
that, in a given reference configuration, the Cauchy stress
tensor depends only on the material points and on the in-
finitesimal deformations applied on them, that is

σ = σ(FKr
, Kr(X)). (3.1)

This relation is simplified in the particular case of hyper-
elastic materials, for which equation (3.1) becomes

W = W (FKr
, Kr(X)). (3.2)

where W is a scalar valued funtion which measures the
stored energy per unit volume.
Among other postulates (principle of determinism, princi-
ple of local action, principle of frame-indifference, etc.), it is
claimed that the constitutive equation must not depend on
the reference configuration. It turns out that equation (3.1)
(and (3.2)) now can be written in the form

σ = σ(F, X) (W = W (F, X), respectively), (3.3)

where F stands for the tangent map at X of a local configu-
ration (deformation).

Definition 3.1. We say that two points X, Y ∈ B are mate-
rially isomorphic (made of same material) if there exists a
linear isomorphism PXY : TXB → TY B such that

σ(F · PXY , X) = σ(F, Y ), (3.4)

for any deformation F at Y .
The linear isomorphism PXY is called a material isomor-
phism when X 6= Y and a material symmetry when X = Y .
The set of material symmetries at a material point X ∈ B is
denoted by G(X) and it is called the symmetry group of B
at X.

Figure 3: Material isomorphism.

Even if the definition of material isomorphism and material
symmetries are mathematically the same, there is an im-
portant conceptual difference. While the symmetry group
of a point characterizes the material behaviors of that point,
a material isomorphism establishes a relation between two
points.

4. Uniformity and Homogeneity

Definition 4.1. The set of material isomorphisms and sym-
metries of a body B is called the material groupoid, that is
the set

G(B) = {PXY ∈ Π(B) satisfying (3.4)}. (4.1)

It is easy to check that the material groupoid G(B) is actually
a groupoid. Furthermore, it is a subgroupoid of the groupoid
of isomorphism Π(B). But note that it is not necessarily a
Lie groupoid or a transitive one as the frame groupoid.
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Definition 4.2. Given a material body B, we say that it
is uniform if the material groupoid G(B) is transitive, and
smoothly uniform when the material groupoid is a transitive
differential groupoid (and hence a Lie subgroupoid of Π(B)).

Remark 4.3. If two points X, Y ∈ B are materially isomor-
phic, the corresponding symmetry groups are conjugate,
namely

G(Y ) = P · G(X) · P−1 (4.2)

for any material isomorphism P ∈ GXY (B). Thus, in a uni-
form body, the symmetry groups are pairwise conjugate.

Definition 4.4. A material G-structure of a smoothly uniform
body B is any of the Gz-structures induced by the material
groupoid as shown in theorem 2.3. The chosen reference
frame z ∈ FB is called the reference crystal.

Figure 4: The reference crystal.

Definition 4.5. Given a smoothly uniform body B, a con-
figuration K that induces a cross-section of a material G-
structure will be called uniform. If there exists an atlas
{(Uα, Kα)}α∈A of B of local uniform configurations for a
fixed material G-structure, the body B will be said locally
homogeneous, and (globally) homogeneous if the body B
may be covered by just one uniform configuration.

The material concept of homogeneity corresponds to the
mathematical concept of integrability. Integrability con-
ditions of smoothly uniform bodies are developed in [6]
through a clasification of Lie subgroups of Gl(3).

5. Unisymmetry and Homosymmetry

As we have seen, the concept of homogeneity must be
understood within the framework of uniformity. But, there
are materials that are not uniform, the so called functionally
graded materials, or FGM for short. This type of material is
made by some techniques that do it gradually different from
point to point: for instance, ceramic metal composite used
in aeronautics, which consists in a plate made of ceramic
at one side that continously change to some metal at the
opposite face. The material properties are given through
constitutive equations like (3.3). Therefore, we will have a
notion of symmetry group as in the case of uniform mate-
rials. For a FGM material, the symmetry groups at two dif-
ferent points are still conjugate, accordingly to the following
definition.

Definition 5.1. Given a body B, let be X, Y ∈ B; we say
that a linear map A : TXB −→ TY B is a unisymmetric iso-
morphism if it conjugates the symmetry groups of X and Y ,
namely

G(Y ) = A · G(X) · A−1. (5.1)

Definition 5.2. Given a body B, the set of unisymmetric iso-
morphism, that is the set

N (B) =
{

A ∈ Π(B) : G(Y ) = A · G(X) · A−1
}

, (5.2)

will be called the extended material groupoid.

Figure 5: The extended material groupoid.

Note that the group over a base point in the extended
groupoid is the normalizer of the symmetry group over this
point, i.e.

N (X) = N(G(X)). (5.3)

The difference between a subgroup and its normalizer can
be huge, as in the trivial group, for which the normalizer is
the whole ambient group. So, in a triclinic graded material,
the extended groupoid is the whole frame groupoid.

Definition 5.3. A body B will be said unisymmetric if the ex-
tended material groupoid N (B) is transitive, and smoothly
unisymmetric if it is a Lie groupoid.

Definition 5.4. Let B be a smoothly unisymmetric body.
Any of the asociated G-strutures Nz(B), with z ∈ FB,
will be called a material N -structure. A cross-section of a
material N -structure will be a unisymmetric cross-section
and a configuration inducing such a cross-section will be
a unisymmetric configuration. If for any of the material N -
structures there exists a covering by unisymmetric configu-
rations, the body B will be said locally homosymmetric, and
(globally) homosymmetric if the covering consists of only
one unisymmetric configuration.

6. Elastic Solids

In some materials, points are know to exhibit prefered
states, which is the case of elastic solid materials. In such
class of materials, each point has an undistorted state in
which the isotropy group may be seen as a subgroup of the
rotation group. If furthermore it is posible to choose locally
a configuration of undistorted states then the material will
be in a natural or relaxed configuration.
Definition 6.1. A smoothly uniform body B is said to be an
elastic solid if there is a material G-structure such that G is
a subgroup of the orthogonal group O(3). Such a material
structure is said to be undistorted.
Theorem 6.2. Let B be an elastic solid. Each undistorted
material G-structure defines a Riemannian metric g on B
invariant under material isomorphisms.
The metric g is given in the following way, let (U, σ) be a local
cross-section of a fixed undistorted material G-structure,

gX(v, w) =
〈
σ(X)−1 · v, σ(X)−1 · w

〉
, (6.1)

where X ∈ U and v, w ∈ TXB.
Definition 6.3. A body B is an elastic solid if there exists a
covering Σ of B by local cross-sections of FB verifying:
1. σ(X)−1 · G(X) · σ(X) ≤ O(3) ∀X ∈ U ∀(U, σ) ∈ Σ;

2. σ(X)−1 · τ (X) ∈ O(3) ∀X ∈ U ∩ V ∀(U, σ), (V, τ ) ∈ Σ.
Such a cover Σ will be called an undistorted solid atlas and
it will be supposed maximal.
Remark 6.4. Theorem 6.2 remains valid in the sense that
each undistorted material atlas Σ defines a Riemannian
metric gΣ invariant under material symmetries.
Definition 6.5. A solid material B will be said to be relax-
able if for some undistorted atlas Σ there exists a subcov-
ering Σ0 ⊂ Σ of B induced by local configurations; that is,
if the O(3)-structure given by the metric gΣ is integrable or,
equivalently, if the Riemannian curvature vanish identically.
The elements of Σ0 are called relaxed configurations.
Definition 6.6. We say that a body B is homosymmetrically
relaxable if B is an unisymmetric solid material for which
there exists a cover Σ0 of local configuration that are both,
unisymmetric and relaxed configurations.
Theorem 6.7 (see [1]). If B is relaxable elastic solid that is
also homosymmetric, we have

N̄ (B) = N (B) ∩ O(B), (6.2)

where N̄ (B) consits in the orthogonal part of the isomor-
phisms of N (B). Therefore, B will be homosymmetrically
relaxable if and only if the reduced material groupoid N̄z(B)
is integrable (where z ∈ FB).
Example 6.8. Let B a relaxable and homosymmetric elastic
solid.
• If B is fully isotropic, which means there is a material at-

las Σ in which the symmetry group of each point G(X),
X ∈ B, is equal to the orthogonal group O(TXB, gΣ),
where gΣ is the Riemannian metric related to Σ. Thus,
the reduced material groupoid N̄ (B) would coincide with
the orthogonal grupoid O(B).

• If B is triclinic (the only element of the symmetry group is
the identity map), the extended material groupoid N (B)
is the full frame groupoid Π(B), and thus N̄ (B) = O(B)
as before.

• If B is transversally isotropic, at each point X ∈ B there
exists a basis of TXB in which the material symmetries
g ∈ G(X) may be represented by matrices of the form:1 0 0

0 cos θ − sin θ
0 sin θ cos θ


Thus, for this basis, the normalizer of G(X) is

N (X) =

〈1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

α 0 0
0 β 0
0 0 β

〉

where the brackets denote the group generated by the
elements within it, where θ, α, β are real numbers and
where α, β are in addition positive. Therefore, the group
at any base point of the reduced normalizoid coincides
with the respective symmetry group, that is

N̄ (X) = G(X) ∀x ∈ B.

This means that, even if the material groupoid G(B) is
not transitive (i.e. B is not uniform), so it is the reduced
material groupoid N̄ (B) and it coincides with G(B) on the
symmetry groups. Thus, there is some kind of unifor-
mity that generalizes the classical one. Finally, note that
any G-structure related to N̄ (B) will have a transversally
istropic structural group as mentioned before.

7. Elastic Fluids

The stantard definition of an elastic fluid is a uniform elastic
material which posses a unimodular material structure, that
is a U(3)-structure (see [9] for instance), even though there
are smaller fluid structures as the ones of fluid crystals (cf.
[6]).

Definition 7.1. A body B is (an elastic) fluid if there exists
a covering Σ of B by smooth local cross-sections of FB
verifying:
1. σ(X)−1 · GX · σ(X) ≤ U(3) ∀X ∈ U ∀(U, σ) ∈ Σ;
2. σ(X)−1 · τ (X) ∈ U(3) ∀X ∈ U ∩ V ∀(U, σ), (V, τ ) ∈ Σ.
Such a cover Σ will be called an undistorted fluid atlas and
supposed maximal.
Proposition 7.2. Let B be a fluid material, then each undis-
torted fluid atlas Σ defines a volume form ρΣ invariant under
material symmetries.
From the volume form ρΣ is straightforward to define a de-
terminant on Π(B), for which the material symmetries will
be unitary.
Proposition 7.3 (see [1]). If B is a unisymmetric elastic
fluid, then

N 1(B) = N (B) ∩ U(B), (7.1)

where N 1(B) is the reduced material groupoid which con-
sits in the unimodular part of the isomorphisms of N (B),
that is

N 1(B) = N 1(B)/detρ. (7.2)

Example 7.4. Let B a fluid crystal of first kind (see [6, 10]),
that is, an elastic fluid as in 7.1 such that, for each material
point x ∈ B, the symmetry group Gx may be represented
for some reference z at X by matrices of the form

A =

a b 0
c d 0
e f g


with det(A) = ±1. The normalizer in Gl(3) of this group of
matrices is the set of matrices of the same form but with
the restriction det(A) 6= 0. Therefore, when we intersect the
normalizer with U(3) we obtain the original group of ma-
trices. This means that N 1(X) = G(X) for every material
point X ∈ B.
The latter example shows us how a fluid material, which is
not necessarilly uniform, preserves uniformly the symmetry
group structure across the body.
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