Holonomy Group of Pseudo-Riemannian Cones

Joint work with V. Cortes, A. Galaev, Th. Leistner

Let (M,g) be a pseudo-Riemannian manifold of signature $(p,q)=(-,\cdots,-,+,\cdots,+)$. We denote by H the **holonomy group** of (M,g) and by $\mathfrak{h}\subset\mathfrak{so}(V)$ $(V=T_pM,\ p\in M)$ the corresponding **holonomy algebra**.

We say that

h is decomposable

if V contains a proper non-degenerate \mathfrak{h} -invariant subspace.

By Wu's theorem this means that M is locally decomposed as a product of two pseudo-Riemannian manifolds.

In the opposite case \mathfrak{h} is called **indecomposable**.

We say that \mathfrak{h} is **reducible** if it preserves a (possibly degenerate) proper subspace of V.

The holonomy algebra \mathfrak{h} is of exactly one of the following types:

- (i) decomposable,
- (ii) reducible indecomposable or
- (iii) irreducible.

We say that the reducible indecomposable holonomy algebra $\mathfrak h$ is of **para-Kähler type** if it preserves a non trivial direct sum decomposition $V=V_1+V_2$ of V. This means that the manifold (M,g) has a para-Kähler structure that is a parallel field J of skew-symmetric endomorphisms with $J^2=\mathrm{Id}$ (L. Bererd-Bergery, M. Olbricht).

Let

$$(C_{\varepsilon}M = \mathbb{R}^+ \times M, \widehat{g} = \widehat{g}_{\varepsilon} = \varepsilon dr^2 + r^2g)$$

be the space-like for $\varepsilon=1$ or timelike for $\varepsilon=-1$ metric cone over (M,g). We denote by

$$\widehat{H} = \widehat{H}_{\varepsilon} \subset SO(\widehat{V}), \ \widehat{V} = T_pM, \ p \in M$$

the holonomy group of $(\widehat{M},\widehat{g}_{arepsilon})$ and by

$$\widehat{\mathfrak{h}} = \widehat{\mathfrak{h}_{arepsilon}} \subset \mathfrak{so}(\widehat{V})$$

the corresponding holonomy algebra.

It is sufficient to consider the spacelike cone $\widehat{M}:=C_+(M)$. We study when the holonomy algebra of the cone \widehat{M} is of one of the types (i-iii).

Theorem 1 (S. Gallot, 1979) Let (M,g) be a complete Riemannian manifold. If the Riemannian cone \widehat{M} has decomposable holonomy algebra $\widehat{\mathfrak{h}}$ then (M,g) has constant curvature 1 and the cone is flat. If, in addition, (M,g) is simply connected, then it is equal to the standard sphere.

Applications

1.[Ch.Bär] Classification of Riemanian manifolds which admits real Killing spinors.

2. In pseudo-Riemannian case, an application for construction of Einstein pseudo-Riemannian and Riemannian metrics in a given conformal class.

Conformal pseudo-Riemannian structure c=[g] on a manifold M defines the Tractor bundle $T\to M$ with Tractor connection ∇^T . Parallel sections of the tractor bundle T correspond to Einstein metrics in the conformal class c and, hence, are determined by the holonomy group H of ∇^T .

If the conformal class c contains an Einstein metric then H can be identified with the holonomy group of the Levi-Civita connection of Feffermann metric, associated with c. Moreover, this metric is the cone metric over a pseudo-Riemannian manifold.

Case i). The cone \widehat{M} over a pseudo-Riemannian manifold M has decomposable holonomy algebra \widehat{h}

Local result

Theorem. Let (M,g) be a pseudo-Riemannian manifold with decomposable holonomy algebra \widehat{h} of the cone \widehat{M} . Then the manifold (M,g) has full holonomy algebra so(p,q), where (p,q) is the signature of the metric g. Furthermore, there exists an open dense submanifold $M' \subset M$ such that any point $p \in M'$ has a neighborhood isometric to a pseudo-Riemannian manifold of the form

$$(a,b) \times N_1 \times N_2$$

with the metric given either by

$$g = ds^2 + \cos^2(s)g_1 + \sin^2(s)g_2$$

or $g=-ds^2+\cosh^2(s)g_1+\sinh^2(s)g_2$, where g_1 and g_2 are metrics on N_1 and N_2 respectively.

The case when (M,g) is complete

Theorem 2 Let (M,g) be a complete pseudo-Riemannian manifold with decomposable holonomy algebra \hat{h} of the cone \widehat{M} . Then there exists an open dense submanifold $M' \subset M$ such that any point $p \in M'$ has a neighborhood M(p) which either

- 1) has constant curvature 1 or
- 2) is isometric to the double warped product

$$N = \mathbb{R}^+ \times N_1 \times N_2(-1),$$

$$g = -ds^2 + \cosh^2(s)g_1 + \sinh^2(s)g_2,$$

where $(N_1, g_1), (N_2(-1), g_2)$ are pseudo-Riemannian manifolds and $(N_2(-1), g_2)$ has constant curvature -1.

Gallot Theorem for compact, complete pseudo-Riemannian manifold

Theorem 3 Let (M,g) be a compact complete pseudo-Riemannian manifold with decomposable holonomy algebra \hat{h} of the cone \hat{M} . Then (M,g) has constant curvature 1 and the cone is flat.

Since there is no simply connected compact indefinite pseudo-Riemannian manifold of constant curvature 1, we get

Corollary 1 If (M,g) is a simply connected compact and complete indefinite pseudo-Riemannian manifold, then the holonomy algebra of the cone $(\widehat{M}, \widehat{g})$ is indecomposable.

Case (ii.a) when the holonomy algebra $\widehat{\mathfrak{h}}$ of the cone \widehat{M} is of para-Kähler type

Definition 1 A para-Sasakian structure on a pseudo-Riemannian manifold (M,g) of signature (n+1,n) is a timelike unit Killing vector field T such that $J = \nabla T|_{T^{\perp}}$ is an integrable para-complex structure on the (contact) distribution T^{\perp} .

Theorem 4 Let (M,g) be a pseudo-Riemannian manifold. There is one-to-one correspondence between para-Sasakian structures (M,g,T) on (M,g) and para-Kähler structures $(\widehat{M},\widehat{g},\widehat{J})$ on the cone $(\widehat{M},\widehat{g})$. The correspondence is given by

 $T \mapsto \widehat{J} := \widehat{\nabla} T$.

Similarly, we have the following characterization of the case when the cone \widehat{M} over a 4n-dimensional manifold M admits (locally) a parahyper-Kähler structure, that is three parallel skew-symmetric anticommuting endomorphisms $J_1, J_2, J_3 = J_1 J_2$ such that $J_1^2 = J_2^2 = \operatorname{Id}$. This means that the holonomy algebra $\widehat{\mathfrak{h}} \subset sp(n,\mathbb{R})$.

Definition 2 A 3 para-Sasakian structure on a pseudo-Riemannian manifold (M,g) is a triple (T_1,T_2,T_3) of unite Killing vector fields such that T_1,T_2 are para-Sasakian structures, $[T_i,T_j]=T_k$ and $\nabla T_3|_{T_3^{\perp}}$ is an integrable complex structure on the contact distribution T_3^{\perp} .

Theorem 5 Let (M,g) be a (4n-1)-dimensional pseudo-Riemannian manifold. There is a natural 1-1 correspondence between 3 para-Sasakian structures (T_1,T_2,T_3) on M and para-hyper-Kähler structures $(\hat{J}_1,\hat{J}_2,\hat{J}_3)$ on the cone (\hat{M},\hat{g}) , given by

$$T_i \mapsto \widehat{J}_i := \widehat{\nabla} T_i, \ i = 1, 2, 3.$$

Case (ii.b) when \widehat{M} is the Lorentzian cone with indecomposable reducible holonomy algebra $\widehat{\mathfrak{h}}$.

Theorem 6 Let (M,g) be a Lorentzian manifold of signature (1,n-1) or a negative definite Riemannian manifold and $(\widehat{M} = \mathbb{R}^+ \times M, \widehat{g})$ the cone over M with Lorentzian signature (1,n) or (n,1) respectively. If the holonomy algebra $\widehat{\mathfrak{h}}$ of \widehat{M} is indecomposable reducible (i.e. preserves an isotropic line $\mathbb{R}p$) then it preserves a non-zero isotropic vector p that is $\widehat{\mathfrak{h}} \subset p \wedge E$ where $V = \mathbb{R}p + \mathbb{R}q + E$, $p^2 = q^2 = 0$, < p, q > = 1, < p, E > = < q, E > = 0.

The next theorem treats the case of a Lorentzian cone $\widehat{M} = C_+(M)$ over a negative definite Riemannian manifold M.

Theorem 7 Let (M,g) be a negative definite Riemannian manifold and $(\widehat{M},\widehat{g})$ the cone over M equipped with the Lorentzian metric of signature $(+,-,\cdots,-)$. If \widehat{M} admits a non-zero parallel isotropic vector field then M is isometric to a manifold of the form

$$(M_0 = (a, b) \times N, g = -ds^2 + e^{-2s}g_N),$$
 (1)

where $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$, a < b and (N, g_N) is a negative definite Riemannian manifold. Furthermore, if $\hat{\mathfrak{h}}$ is indecomposable then

$$\widehat{\mathfrak{h}} \cong \mathfrak{hol}(N, g_N) \times \mathbb{R}^{\dim N}.$$

The manifold (M,g) is complete if and only if (N,g_N) is complete and $(a,b)=\mathbb{R}$.

The next theorem treats the case of a Lorentzian cone $\widehat{M} = C_{+}(M)$ over a Lorentzian manifold M of signature $(-, +, \cdots, +)$.

Theorem 8 Let (M,g) be a Lorentzian manifold and $(\widehat{M},\widehat{g})$ the cone over M equipped with the Lorentzian metric. If \widehat{M} admits a non-zero parallel isotropic vector field then there exists an open dense submanifold $M' \subset M$ such that any point $p \in M'$ has a neighborhood isometric to a manifold of the form (1), where (N,g_N) is a positive definite Riemannian manifold. Furthermore, if $\mathfrak{hol}(\widehat{M}_0)$ is indecomposable then

$$\mathfrak{hol}(\widehat{M_0},\widehat{g}) \cong \mathfrak{hol}(N,g_N) \times \mathbb{R}^{\dim N}.$$

If the manifold (M,g) is complete, then we may assume that $(a,b) = \mathbb{R}$.

Preliminaries and examples

Let $\widehat{g} = cdr^2 + r^2g$ be the cone metric on $\widehat{M} := \mathbb{R}^+ \times M$, where (M,g) is a pseudo-Riemannian manifold. Depending on the sign of the constant c the cone is called space-like (c>0) or time-like (c<0). Of course, later on we will assume that c=1 as we allow g to be negative definite.

We denote by ∂_r the radial vector field. The Levi-Civita connection of the cone $(\widehat{M},\widehat{g})$ is given by

$$\widehat{\nabla}_{\partial_r} \partial_r = 0,
\widehat{\nabla}_X \partial_r = \frac{1}{r} X,
\widehat{\nabla}_X Y = \nabla_X Y - \frac{r}{c} g(X, Y) \partial_r,$$
(2)

for all vector fields $X, Y \in \Gamma(T\widehat{M})$ orthogonal to ∂_r . Using this we can calculate the curvature $\widehat{\mathcal{R}}$ of the cone, which is given by the following formulas including the curvature \mathcal{R} of the base metric g:

for $X, Y, Z, U \in TM$. This implies that if (M, g) is a space of constant curvature κ , i.e.

$$\mathcal{R}(\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{U}) = \kappa \left(\{(\mathcal{X}, \mathcal{U})\}(\mathcal{Y}, \mathcal{Z}) - \{(\mathcal{X}, \mathcal{Z})\}(\mathcal{Y}, \mathcal{U}) \right),$$
(3)

the cone has the curvature $r^2\left(\kappa-\frac{1}{c}\right)(g(X,U)g(Y,Z))$ In particular, if $\kappa=\frac{1}{c}$, then the cone is flat, as it is the case for the c=1 cone over the standard sphere of radius 1 or the c=-1 cone over the hyperbolic space.

Since the metric $\widehat{g}^- := -dr^2 + r^2g$ of the time-like cone \widehat{M}^- over (M,g) is obtained by multiplying the metric $dr^2 - r^2g$ of the space-like cone over (M,-g) by -1 it is sufficient to consider only space-like cones. Thus from now on we assume that c=1.

We will now present some examples which illustrate that Gallot's statement is not true in arbitrary signature, and that the assumption of

completeness is essential even in the Riemannian situation.

Theorem 9 Let (F, g_F) be a complete pseudo-Riemannian manifold. Then the pseudo-Riemannian manifold

$$(M = \mathbb{R} \times F, g = -ds^2 + \cosh^2(s)g_F)$$

is complete, the restricted holonomy group of the cone over (M,g) is non-trivial and admits a non-degenerate invariant proper subspace.

The fact that the manifold (M,g) is complete can be checked using O'Neills formulas for warped products as in the case of Riemannian F, cf. [?, Cor. 25]. The non-vanishing terms of the Levi-Civita connection ∇ of (M,g) are given by

$$\nabla_X \partial_s = \tanh(s)X,
\nabla_{\partial_s} X = \partial_s X + \tanh(s)X,
\nabla_X Y = \nabla_X^F Y + \cosh(s)\sinh(s)g_F(X,Y)\partial_s,
(4)$$

where $X,Y\in TF$ are vector fields depending on the parameter s and ∇^F is the Levi-Civita connection of the manifold (F,g_F) . Consider on \widehat{M} the vector field $X_1=\cosh^2(s)\partial_r-\frac{1}{r}\sinh{(s)}\cosh{(s)}\partial_s$ We have $\widehat{g}(X_1,X_1)=\cosh^2(s)>0$. It is easy to check that the distribution generated by the vector field X_1 and by the distribution $TF\subset T\widehat{M}$ is parallel.

For the curvature tensor \mathcal{R} of (M,g) we have

$$\mathcal{R}(\mathcal{X}, \mathcal{Y})\mathcal{Z} = \mathcal{R}_{\mathcal{F}}(\mathcal{X}, \mathcal{Y})\mathcal{Z} + \sinh^{\in}(\int) \left(\left\{ \mathcal{F}(\mathcal{Y}, \mathcal{Z}) \mathcal{X} - (5) \right\} \right)$$

where $X,Y,Z,\ U\in TF$ and $\mathcal{R}_{\mathcal{F}}$ is the curvature tensor of (F,g_F) . This shows that (M,g) cannot have constant sectional curvature. Thus the cone $(\widehat{M},\widehat{g})$ is not flat.

Let M be a manifold of the form $\mathbb{R} \times N$ with the metric $g=-(dt^2+e^{-2t}g_N)$, where (N,g_N) is a pseudo-Riemannian manifold. Then

- 1. The light-like vector field $e^{-t}(\partial_r + \frac{1}{r}\partial_t)$ on the space-like cone \widehat{M} is parallel.
- 2. If $(N=N_1\times N_2,g_N=g_1+g_2)$ is a product of a flat pseudo-Riemannian manifold (N_1,g_1) and of a non-flat pseudo-Riemannian manifold (N_2,g_2) , then \widehat{M} is locally decomposable, not flat and there is a parallel non-degenerate flat distribution on \widehat{M} .

Note that the manifold (M,g) in Example $\ref{eq:grade}$ is complete if and only g_N is complete and positive definite. Notice that g is the hyperbolic metric in horospherical coordinates if (N,g_N) is Euclidian space.

Let (M_1, g_1) and (M_2, g_2) be two pseudo-Riemannian manifolds. Then the product of the cones

$$(\widehat{M}_1 \times \widehat{M}_2 = (\mathbb{R}^+ \times M_1) \times (\mathbb{R}^+ \times M_2), \widehat{g} = (dr_1^2 + r_1^2 g_1) + (dr_2^2 + r_1^2 g_1) + (dr_2^2$$

is the space-like cone over the manifold

$$(M = \left(0, \frac{\pi}{2}\right) \times M_1 \times M_2, g = ds^2 + \cos^2(s)g_1 + \sin^2(s)g_2$$

Consider the functions

$$r = \sqrt{r_1^2 + r_2^2} \in \mathbb{R}^+, \quad s = \operatorname{arctg}\left(\frac{r_2}{r_1}\right) \in \left(0, \frac{\pi}{2}\right).$$

Since $r_1, r_2 > 0$, the functions r and s give a diffeomorphism $\mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \times \left(0, \frac{\pi}{2}\right)$. For $\widehat{M}_1 \times \widehat{M}_2$ we get

$$\widehat{M}_1 \times \widehat{M}_2 \cong \mathbb{R}^+ \times \left(0, \frac{\pi}{2}\right) \times M_1 \times M_2$$

and

$$\widehat{g}_1 + \widehat{g}_2 = dr^2 + r^2(ds^2 + \cos^2(s)g_1 + \sin^2(s)g_2).$$

Suppose that the manifolds (M_1,g_1) and (M_2,g_2) are Riemannian, then the manifold (M,g) is Riemannian and it is not complete. The cone

over M is decomposable and non-flat. Example shows that the completeness assumption in Theorems $\ref{eq:math:eq:mat$

Let (M_1,g_1) and (M_2,g_2) be two pseudo-Riemannian manifolds. Then the product of the truncated cones

$$(\widehat{M}_1 \times \widehat{M}_2^- = ((1, +\infty) \times M_1) \times ((0, 1) \times M_2), \widehat{g}_1 + \widehat{g}_2^- =$$

is the space-like cone over the manifold

$$(M = \mathbb{R}^+ \times M_1 \times M_2, g = -ds^2 + \cosh^2(s)g_1 + \sinh^2(s)g_1$$

Consider the functions

$$r = \sqrt{r_1^2 - r_2^2} \in \mathbb{R}^+, \quad s = \operatorname{arcth}\left(\frac{r_2}{r_1}\right) \in \mathbb{R}^+.$$

The functions r and s give a diffeomorphism $(1, +\infty) \times (0, 1) \to \mathbb{R}^+ \times \mathbb{R}^+$. For $\widehat{M_1} \times \widehat{M_2}^-$ we get

$$\widehat{M}_1 \times \widehat{M}_2^- \cong \mathbb{R}^+ \times \mathbb{R}^+ \times M_1 \times M_2$$

and

$$\widehat{g}_1 + \widehat{g}_2^- = dr^2 + r^2(-ds^2 + \cosh^2(s)g_1 + \sinh^2(s)g_2).$$

Let $(t, x_1, \ldots, x_n, x_{n+1}, \ldots, x_{2n})$ be coordinates on \mathbb{R}^{2n+1} and consider the metric g given by

$$g = \begin{pmatrix} -1 & 0 & u^t \\ \hline 0 & 0 & H^t \\ \hline u & H & G \end{pmatrix} \tag{6}$$

in which

- $u=(u_1,\ldots,u_n)$ is a diffeomorphism of \mathbb{R}^n , depending on x_1,\ldots,x_n ,
- $H=1/2\left(\partial(u_i)/\partial x_j\right)_{i,j=1}^n$ its non-degenerate Jacobian, and
- G the symmetric matrix given by $G_{ij} = -u_i u_j$.

Then the space-like cone over (\mathbb{R}^{2n+1}, g) is not flat but its holonomy representation decomposes into two totally isotropic invariant subspaces. For the proof of this see Proposition ?? in Section ??.