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ABSTRACT

We develop a constraint algorithm for pre-cosymplectic Lie algebroids which is a generalization of the
constraint algorithms discussed in [2, 4]. We use our algorithm to present a geometric description of
vakonomic mechanics on Lie affgebroids. In fact, we obtain the dynamical equations for a vakonomic
system on a Lie affgebroid A. Moreover, in the particular case when A is the standard Lie atfgebroid, we
recover the equations obtained in [7] (see also [1]).

LIE AFFGEBROIDS

Let 74 : A — @ be an affine bundle with associated vector bundle 7, : V' — Q. Denote by 74+ : AT =
Aff(A,R) — @ the dual bundle which has a distinguished section 1 4 € ['(7 4+) corresponding to the

constant function 1 on A and by 7 1 A = (AT)* — @ the bidual bundle.

Definition 1. A Lie affgebroid structure on A consists of a Lie algebra structure |-, -]y on I'(1y/), a R-
linear action D : 1'(14) x (1) — (1) and an affine map p 4 : A — TQ, the anchor map, satisfying:

= [DxY,Z]ly +[Y,DxZ]y

e Dy.vZ = DxZ+[V. 2]y
= fDXY +pAX)()Y, S

for X € F(T_A), Y, Z

A Lie affgebroid structure on 74 : A — () induces a Lie algebroid structure (|-, - on the bidual

L3 r3)
bundle A s.t. 14 € T(74+) is a l-cocycle (i.e. d14 = 0). Conversely, if (U, [, -]y, py) is a Lie
algebroid over () and ¢ : U — R is a 1-cocycle s.t. ¢\Ux #+ 0,Vx € Q,thenty : A = o~ 1{1} —

admits a Lie affgebroid structure s.t. (A, [-,-] + 1Py = (Ul lu,pp), the 1-cocycle 14 = ¢ and

74 A — Q is modelled on the vector bundle 7y, : V = ¢~ {0} — Q (for more details, see [6]).

Example 1.Let 7 : () — R be a fibration. The 1-jet bundle 71 : J I — @ of local sections of
7 : ¢ — R is an affine bundle modelled on the vector bundle 7 = (7)), : V7 — (. Moreover,

if ¢ is the usual coordinate on R and n = 77(dt) € T™(), then Jir = {v € TQ|n(v) = 1}. Note

that V7 = {v € TQ|n(v) = 0}. Thus, the bidual bundle J'7 = T'(). Therefore, the affine bundle
1,0 J L+ — © admits a Lie affgebroid structure. In fact, the Lie algebroid structure on 7y : T'Q) — () is
the standard Lie algebroid structure and the 1-cocycle 1 i 1s just the closed 1-form 7. AN

Now, let (z*) be local coordinates on ) and {eq, e, } be a local basis of I'(7 ) adapted to 1 4,1.e., 1 4(eq) =

1 and 1 4(eq) = 0, Vo Denote by (2*,4", y%) the corresponding local coordmates on A. Then, the local
equation defining the affine subbundle A (resp., the vector subbundle V') of Ais ) =1 (resp., yV = 0).

LLAGRANGIAN MECHANICS ON LIE AFFGEBROIDS

We consider the Lie algebroid prolongation (TJZ( T AA — A, [, ]]%4, pjf) of the Lie algebroid ( JZ(’ [ .]120

p Av) over the fibration 74 : A — @ (see [6]). We define a local basis { X, Xy, Vo } of F(T;%‘):

Zi ), Voé(au):(()i )

o,
Xy (a) = (QO(TA(a)),pO@M), Xo(a) = (6@(TA(a)>apaa$@|a Oy~ B

where pO, p'. are the components of the anchor map p i If {xV, X% V) is the dual basis of { X, X, Vo,
then A is globally defined and it is a 1-cocycle. We Wlll denote by ¢ the 1-cocycle X. 0

One may also consider the vertical endomorphism S : T Af T AA, as a section of the vector bundle
TAA® (TAA)* — A, whose local expression is S = (X% — y%¢g) ® Va.

A section £ € F(TE{‘) is said to be a second order differential equation (SODE) on A if ¢g(§{) = 1 and
S ¢ = 0. Insuchacase, £ = & + y* Xy + EYV,, where £ are local functions on A.

Now, acurve v : I C R — Ain A is said to be admissible if (i 4(y(t)), (1)) € T{%A, forallt € I.

Here, i 4 : A — A s the canonical inclusion.

It is clear that if £ 1s a SODE then the integral curves of the vector field p}“lf‘(ﬁ' ) are admissible.

On the other hand, let L : A — R be a Lagrangian function. We introduce the Poincaré-Cartan 1-section
O € F((T%)*) and the Poincaré-Cartan 2-section {17, € F(/\Q(TZ{‘)*) associated with L defined by

O; = Log + (dTAL).S, Qp = —dT e,

Acurve v : I = (—e,¢) € R — A on A is a solution of the Euler-Lagrange equations
associated with L iff y is admissible and i; , (1)) 5(1))$2L(7(t)) = 0, for all ¢ (see [6]).

If v(t) = (z'(t), y“(t)) then ~ is a solution of the Euler-Lagrange equations iff

OL
oy’

dz d(@L) . OL

_ i _ 7 6
dt po—l_pOdy ) dt a o p()éaxz (C O )

C’O 0 Cg& being the (local) structure functions of |-, -] j With respect to the basis {eg, eat.
o . . 0°L \ . . .
The Lagrangian L is regular iff the matrix (W, 3) = (8 > ﬁ) 1s regular or, 1n other words, the pair
Yoy

(27, dp) is a cosymplectic structure on 74 A. In such a case, the Reeb section Ry of (€7, d) is the
unique Lagrangian SODE associated with L and, thus, the integral curves of ’OA 4(R; ) are solutions of the

Euler-Lagrange equations associated with L. R is called the Euler-Lagrange section associated with L.

CONSTRAINT ALGORITHM FOR PRECOSYMPLECTIC LIE ALGE-
BROIDS

Let 7y . E — () be a Lie algebroid, {2 € F(/\2 ) be a presymplectic 2-section (d¥Q = 0) and nel(ry)
be a closed 1-section (dE = ().

The dynamics of the precosymplectic system defined by (2, n) is given by a section
X € I'(tg) satistying the dynamical equations

ixQ=0 and iyn=1. (1)

Now, we take an arbitrary section Y € I'(7g) s.t. iy = 1. Then, Q@ = QY + n A 4y Q. Thus, for e € E,:
ieQ2z) =0 and ien(z) =1 < 0" () = —iy Q(x) and ien(z) = 1.
We define the vector bundle morphism b : £ — E™ (over the identity of () as follows
h(e) =i(e)Y (z) + n(z)(e)n(z), for e € E.
If x € () and F); is a subspace of E,, we may introduce the vector subspace Fa} of £, given by
Fy = (0(Fy)° = {e € Ex | (=i (z) + n(z)(e)n(x))(f) = 0,V € Fy}.

In general, a section X satisfying (1) cannot be found in all points of (). We define

={r e Q|3ec Ey:if2x) =0 and ien(z) = 1} = {z € Q[ n(r) — iy Q(zr) € b(Ey) = (Ej)o}
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If ()1 1s an embedded submanifold of (), then there exists X : ()1 — E asectionof 7 : £ — ()
along ()1 s.t. (1) holds. But p(X) is not, in general, tangent to ()1 (p : £ — TQ is the anchor map
of the Lie algebroid £). Thus, we have that to restrict to f; = p_l(TQl). If £ 1s a manifold and
T =T\, FE1 — ()1 1s a vector bundle, then 71 : £ — ()1 1s a Lie subalgebroid of £ — ().

Now, we must consider

Q2 = {z € Q1| n(z) — iy, 2(x) € (E1))} = {z € Q1| (n(x) — iy, Q(x))(e) = 0, Ve € (E1); }.

If ()7 1s an embedded submanifold of ()1, then there exists X : ()o — FEj a section of 71 : i — ()
along ()9 such that (1) holds. However, p(X) is not, in general, tangent to ()9. Therefore, we have that to
restrict to Lo = p_l(TQQ). As above, 1f L9 1s a manifold and ™ = TIE, Fy — ()9 1s a vector bundle, it
follows that » : 9 — ()9 is a Lie subalgebroid of 71 : £ — @)1.

Consequently, if we repeat the process, we obtain a sequence of Lie subalgebroids (by assumption):
P Qpr TR T T QR Q=0
‘Tk_l_l ‘Tk {’7’2 \71 ‘7‘0 =T
Tl T Ey— ... 7 Ey —~ B 7 Ey=FE
where Q41 = {z € Qi | (n(x) — iy, Qa))(e) = 0,Ve € (Bt} and By iy = p~{(TQpy). 1t 3k € N

s.t. Qr, = k1, then we say that the sequence stabilizes. In such acase, 7 =7, : By = Ej, — Q= Qy
is a Lie subalgebroid of 7 : £ — ) and 3X € F(Tf) (but non necessarily unique), satisfying (1).

VAKONOMIC EQUATIONS

Let 74 : A — @ be a Lie affgebroid of rank n over a manifold () of dimension m, L : A — R be a
Lagrangian function and M C A be an embedded submanifold of dimension m + (n —m), the constraint
submanifold, such that Tyq = 7 4z : M — (@) 1s a surjective submersion. Denote by L the restriction of

L to M.

Then, we can choose local coordinates (xi, YY) = (mi, g/‘l, y“Yon A, withl < a <n,l1 < A < m and
m+ 1 < a < nsuch that M = {(z%,y®) |y = UA(2?,y%), A =1,...,m}. Thus, (!, y?) are local
coordinates on M.

We consider the following diagrams

A+@QA Wo—pr = AT by M
Py \pr2 / \
AT A

Denote by v : Wy — () the canonical projection whose local expression is u(xi, Y0, Yo, &) = ().

Wy, — A" to a Lie algebroid morphism 77| : 7“4 — T AAT defined by T =
(Id, Tm). Then, Q = (T, m)"Q i is a presymplectic 2-section on 7 AWy, Q i being the canonical

We prolong 7y

symplectic section associated with the Lie algebroid A (see [3])).

~

The Pontryagin Hamiltonian is the function Hyy, : W — R given by Hyy, (¢, a) = p(a) — L(a).

We define the 1-cocycle n € I'((7 A) ) given by n(a, X) = 14(a), for (4, X) € T ZWO and we consider

the presymplectic 2-section {2y = ) + dTAWOH w, AnonT AWO.

The vakonomic problem (L, M) on A is find the solutions for the equations

1x${p =0 and 1xn =1, X € F(TE(), (2)

i.e., to solve the constraint algorithm for (74W, Qp, 1).

Note that in the free case, i.e., M = A, we obtain a Skinner and Rusk formulation for the Lagrangian
function L on the Lie affgebroid A. It is a extension of the results obtained in [3].

L yA
The equations (2) only have sense in the points of W satistfying that y, = g - — Y A% —, va. If
{0, Yo, Py, Pa, Va } is the local basis of I'(7 ) given by
- )
Volpra) = (60(”@(% ) i, 0)> Yalora) = (ea<2<so,a>>,pa@¢,o), a
0, — ,0 0, — .0 ¢ = (0,0, =—
PO(@? ) ( ayo‘gp )7 POZ(@? ) ( ay@\@ )7 V (907 a) ( ’ aayala)a

then, a solution of (2) 1s of this form

oL owP
9zt 7B

X = Yo+ U + 4"V, + X'Py + {pa( ) +y,(C, + \IJBC7 + ybcga)} P+ XV

Acurve 0t — o(t) = ('), y0(t), yalt), y*(t)) on Wy is a solution of the vakonomics
equations associated with (L, M) if

(i = ph+ UAply + y

oL oub B
YA = (W ~YB 5 )PA y7(C) A0 TV CZBﬂ/aCXa)v (3)

OL ouA OL ouAy
dt <3ya a> (a;m YA Ot )pa vago + \PBCJB T ybCZb).

/"

Example 2. Let 71 - J L — Q be the Lie affgebroid associated with the fibration 7 : () — R. Thus, we
can consider a constrained system (L, M) on .J L. In this case, the vakonomic equations (3) are just the
equations obtained in [7] (see also [1]). Note that if (t, %) are local coordinates on () which are adapted

to the fibration T, then {ey = %, o = } is a local basis of A= T'Q) adapted to 1 4 = 1. Furthermore,

we have that 9 9
Pj(e()) ~ 9y P;((eo) = 8_410” leo, Ga]]j = [eq, eﬁﬂj =
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