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If Q1 is an embedded submanifold of Q, then there exists X : Q1 → E a section of τ : E → Q

along Q1 s.t. (1) holds. But ρ(X) is not, in general, tangent to Q1 (ρ : E → TQ is the anchor map
of the Lie algebroid E). Thus, we have that to restrict to E1 = ρ−1(TQ1). If E1 is a manifold and
τ1 = τ|E1

: E1 → Q1 is a vector bundle, then τ1 : E1 → Q1 is a Lie subalgebroid of E → Q.

Now, we must consider

Q2 = {x ∈ Q1 | η(x)− iYx
Ω(x) ∈ [((E1)x)} = {x ∈ Q1 | (η(x)− iYx

Ω(x))(e) = 0, ∀e ∈ (E1)
⊥
x }.

If Q2 is an embedded submanifold of Q1, then there exists X : Q2 → E1 a section of τ1 : E1 → Q1

along Q2 such that (1) holds. However, ρ(X) is not, in general, tangent to Q2. Therefore, we have that to
restrict to E2 = ρ−1(TQ2). As above, if E2 is a manifold and τ2 = τ|E2

: E2 → Q2 is a vector bundle, it
follows that τ2 : E2 → Q2 is a Lie subalgebroid of τ1 : E1 → Q1.

Consequently, if we repeat the process, we obtain a sequence of Lie subalgebroids (by assumption):

. . . ↪→Ek+1 ↪→Ek ↪→ . . . ↪→ E2 ↪→ E1 ↪→E0 = E
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τ2
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. . . ↪→Qk+1 ↪→Qk ↪→ . . . ↪→Q2 ↪→Q1 ↪→Q0 = Q

where Qk+1 = {x ∈ Qk | (η(x) − iYx
Ω(x))(e) = 0,∀e ∈ (Ek)⊥x } and Ek+1 = ρ−1(TQk+1). If ∃k ∈ N

s.t. Qk = Qk+1, then we say that the sequence stabilizes. In such a case, τf = τk : Ef = Ek → Qf = Qk
is a Lie subalgebroid of τ : E → Q and ∃X ∈ Γ(τf ) (but non necessarily unique), satisfying (1).

VAKONOMIC EQUATIONS
Let τA : A → Q be a Lie affgebroid of rank n over a manifold Q of dimension m, L : A → R be a
Lagrangian function andM⊆ A be an embedded submanifold of dimension m+(n− m̄), the constraint
submanifold, such that τM = τA|M : M→ Q is a surjective submersion. Denote by L̃ the restriction of
L to M.

Then, we can choose local coordinates (xi, yα) = (xi, yA, ya) on A, with 1 ≤ α ≤ n, 1 ≤ A ≤ m̄ and
m̄ + 1 ≤ a ≤ n such that M ≡ {(xi, yα) | yA = ΨA(xi, ya), A = 1, . . . , m̄}. Thus, (xi, ya) are local
coordinates on M.

We consider the following diagrams
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W0 = pr−1
2 (M) = A+ ⊕QM

A+ M

π1 π2

Denote by ν : W0 → Q the canonical projection whose local expression is ν(xi, y0, yα, ya) = (xi).

We prolong π1 : W0 → A+ to a Lie algebroid morphism T π1 : T ÃW0 → T ÃA+ defined by T π1 =

(Id, Tπ1). Then, Ω = (T π1, π1)
∗ΩÃ is a presymplectic 2-section on T ÃW0, ΩÃ being the canonical

symplectic section associated with the Lie algebroid Ã (see [5]).

The Pontryagin Hamiltonian is the function HW0
: W0 → R given by HW0

(ϕ, a) = ϕ(a)− L̃(a).

We define the 1-cocycle η ∈ Γ((τν
Ã

)∗) given by η(ã, X) = 1A(ã), for (ã, X) ∈ T ÃW0 and we consider

the presymplectic 2-section Ω0 = Ω + dT
ÃW0HW0

∧ η on T ÃW0.

The vakonomic problem (L,M) on A is find the solutions for the equations

iXΩ0 = 0 and iXη = 1, X ∈ Γ(τν
Ã), (2)

i.e., to solve the constraint algorithm for (T ÃW0, Ω0, η).

Note that in the free case, i.e., M = A, we obtain a Skinner and Rusk formulation for the Lagrangian
function L on the Lie affgebroid A. It is a extension of the results obtained in [3].

The equations (2) only have sense in the points of W0 satisfying that ya =
∂L̃

∂ya − yA
∂ΨA

∂ya , ∀a. If

{Y0,Yα,P0,Pα,Va} is the local basis of Γ(τν
Ã

) given by

Y0(ϕ, a) =
(
e0(ν(ϕ, a)), ρi

0
∂

∂xi|ϕ
, 0
)
, Yα(ϕ, a) =

(
eα(ν(ϕ, a)), ρi

α
∂

∂xi|ϕ
, 0
)
,

P0(ϕ, a) =
(
0,

∂

∂y0|ϕ
, 0
)
, Pα(ϕ, a) =

(
0,

∂

∂yα |ϕ
, 0
)
, Va(ϕ, a) =

(
0, 0,

∂

∂ya|a

)
,

then, a solution of (2) is of this form

X = Y0 + ΨAYA + yaYa + X0P0 +
[
ρi
α

(∂L̃

∂xi
− yB

∂ΨB

∂xi

)
+ yγ(C

γ
0α + ΨBC

γ
Bα + ybC

γ
bα)
]
Pα + XaVa.

A curve σ : t 7→ σ(t) = (xi(t), y0(t), yα(t), ya(t)) on W0 is a solution of the vakonomics
equations associated with (L,M) if

ẋi = ρi
0 + ΨAρi

A + yaρi
a,

ẏA =
(∂L̃

∂xi
− yB

∂ΨB

∂xi

)
ρi
A − yγ(C

γ
A0 + ΨBC

γ
AB + yaC

γ
Aa),

d

dt

(
∂L̃

∂ya − yA
∂ΨA

∂ya

)
=
(∂L̃

∂xi
− yA

∂ΨA

∂xi

)
ρi
a − yγ(C

γ
a0 + ΨBC

γ
aB + ybC

γ
ab).

(3)

Example 2. Let τ1,0 : J1τ → Q be the Lie affgebroid associated with the fibration τ : Q → R. Thus, we
can consider a constrained system (L,M) on J1τ . In this case, the vakonomic equations (3) are just the
equations obtained in [7] (see also [1]). Note that if (t, qα) are local coordinates on Q which are adapted
to the fibration τ , then {e0 = ∂

∂t, eα = ∂
∂qα} is a local basis of Ã ≡ TQ adapted to 1A = η. Furthermore,

we have that
ρÃ(e0) =

∂

∂t
, ρÃ(eα) =

∂

∂qα, [[e0, eα]]Ã = [[eα, eβ]]Ã = 0.
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LIE AFFGEBROIDS
Let τA : A → Q be an affine bundle with associated vector bundle τV : V → Q. Denote by τA+ : A+ =

Aff (A, R) → Q the dual bundle which has a distinguished section 1A ∈ Γ(τA+) corresponding to the
constant function 1 on A and by τÃ : Ã = (A+)∗→ Q the bidual bundle.

Definition 1. A Lie affgebroid structure on A consists of a Lie algebra structure [[·, ·]]V on Γ(τV ), a R-
linear action D : Γ(τA)× Γ(τV ) → Γ(τV ) and an affine map ρA : A → TQ, the anchor map, satisfying:

•DX [[Ȳ , Z̄]]V = [[DX Ȳ , Z̄]]V + [[Ȳ , DXZ̄]]V , • DX+Ȳ Z̄ = DXZ̄ + [[Ȳ , Z̄]]V ,

•DX(fȲ ) = fDX Ȳ + ρA(X)(f )Ȳ , for X ∈ Γ(τA), Ȳ , Z̄ ∈ Γ(τV ) and f ∈ C∞(Q).

A Lie affgebroid structure on τA : A → Q induces a Lie algebroid structure ([[·, ·]]Ã, ρÃ) on the bidual

bundle Ã s.t. 1A ∈ Γ(τA+) is a 1-cocycle (i.e. dÃ1A = 0). Conversely, if (U, [[·, ·]]U , ρU ) is a Lie
algebroid over Q and φ : U → R is a 1-cocycle s.t. φ|Ux

6= 0, ∀x ∈ Q, then τA : A = φ−1{1} → Q

admits a Lie affgebroid structure s.t. (Ã, [[·, ·]]Ã, ρÃ) ∼= (U, [[·, ·]]U , ρU ), the 1-cocycle 1A ≡ φ and
τA : A → Q is modelled on the vector bundle τV : V = φ−1{0} → Q (for more details, see [6]).

Example 1. Let τ : Q → R be a fibration. The 1-jet bundle τ1,0 : J1τ → Q of local sections of
τ : Q → R is an affine bundle modelled on the vector bundle π = (πQ)|V τ : V τ → Q. Moreover,
if t is the usual coordinate on R and η = τ∗(dt) ∈ T ∗Q, then J1τ ∼= {v ∈ TQ | η(v) = 1}. Note
that V τ = {v ∈ TQ | η(v) = 0}. Thus, the bidual bundle J̃1τ ∼= TQ. Therefore, the affine bundle
τ1,0 : J1τ → Q admits a Lie affgebroid structure. In fact, the Lie algebroid structure on πQ : TQ → Q is
the standard Lie algebroid structure and the 1-cocycle 1J1τ is just the closed 1-form η. 4

Now, let (xi) be local coordinates on Q and {e0, eα} be a local basis of Γ(τÃ) adapted to 1A, i.e., 1A(e0) =

1 and 1A(eα) = 0, ∀α. Denote by (xi, y0, yα) the corresponding local coordinates on Ã. Then, the local
equation defining the affine subbundle A (resp., the vector subbundle V ) of Ã is y0 = 1 (resp., y0 = 0).

LAGRANGIAN MECHANICS ON LIE AFFGEBROIDS
We consider the Lie algebroid prolongation (τ τA

Ã
: T ÃA → A, [[·, ·]]τA

Ã
, ρτA
Ã

) of the Lie algebroid (Ã, [[·, ·]]Ã,

ρÃ) over the fibration τA : A → Q (see [6]). We define a local basis {X0,Xα,Vα} of Γ(τ τA
Ã

):

X0(a) =
(
e0(τA(a)), ρi

0
∂

∂xi|a

)
, Xα(a) =

(
eα(τA(a)), ρi

α
∂

∂xi|a

)
, Vα(a) =

(
0,

∂

∂yα |a

)
,

where ρi
0, ρ

i
α are the components of the anchor map ρÃ. If {X 0,Xα,Vα} is the dual basis of {X0,Xα,Vα},

then X 0 is globally defined and it is a 1-cocycle. We will denote by φ0 the 1-cocycle X 0.

One may also consider the vertical endomorphism S : T ÃA → T ÃA, as a section of the vector bundle
T ÃA⊗ (T ÃA)∗→ A, whose local expression is S = (Xα − yαφ0)⊗ Vα.

A section ξ ∈ Γ(τ τA
Ã

) is said to be a second order differential equation (SODE) on A if φ0(ξ) = 1 and
S ξ = 0. In such a case, ξ = X0 + yαXα + ξαVα, where ξα are local functions on A.

Now, a curve γ : I ⊆ R → A in A is said to be admissible if (iA(γ(t)), γ̇(t)) ∈ T Ã
γ(t)
A, for all t ∈ I .

Here, iA : A → Ã is the canonical inclusion.

It is clear that if ξ is a SODE then the integral curves of the vector field ρτA
Ã

(ξ) are admissible.

On the other hand, let L : A → R be a Lagrangian function. We introduce the Poincaré-Cartan 1-section
ΘL ∈ Γ((τ τA

Ã
)∗) and the Poincaré-Cartan 2-section ΩL ∈ Γ(∧2(τ τA

Ã
)∗) associated with L defined by

ΘL = Lφ0 + (dT
ÃAL)◦S, ΩL = −dT

ÃAΘL.

A curve γ : I = (−ε, ε) ⊆ R → A on A is a solution of the Euler-Lagrange equations
associated with L iff γ is admissible and i(iA(γ(t)),γ̇(t))ΩL(γ(t)) = 0, for all t (see [6]).
If γ(t) = (xi(t), yα(t)) then γ is a solution of the Euler-Lagrange equations iff

dxi

dt
= ρi

0 + ρi
αyα,

d

dt

( ∂L

∂yα

)
= ρi

α
∂L

∂xi
+ (C

γ
0α + C

γ
βαyβ)

∂L

∂yγ ,

C
γ
0α, C

γ
βα being the (local) structure functions of [[·, ·]]Ã with respect to the basis {e0, eα}.

The Lagrangian L is regular iff the matrix (Wαβ) =
( ∂2L

∂yα∂yβ

)
is regular or, in other words, the pair

(ΩL, φ0) is a cosymplectic structure on T ÃA. In such a case, the Reeb section RL of (ΩL, φ0) is the
unique Lagrangian SODE associated with L and, thus, the integral curves of ρτA

Ã
(RL) are solutions of the

Euler-Lagrange equations associated with L. RL is called the Euler-Lagrange section associated with L.

CONSTRAINT ALGORITHM FOR PRECOSYMPLECTIC LIE ALGE-
BROIDS
Let τE : E → Q be a Lie algebroid, Ω ∈ Γ(∧2τ∗E) be a presymplectic 2-section (dEΩ = 0) and η ∈ Γ(τ∗E)

be a closed 1-section (dEη = 0).

The dynamics of the precosymplectic system defined by (Ω, η) is given by a section
X ∈ Γ(τE) satisfying the dynamical equations

iXΩ = 0 and iXη = 1 . (1)

Now, we take an arbitrary section Y ∈ Γ(τE) s.t. iY η = 1. Then, Ω = ΩV + η ∧ iY Ω. Thus, for e ∈ Ex:

ieΩ(x) = 0 and ieη(x) = 1 ⇔ ieΩ
V (x) = −iYx

Ω(x) and ieη(x) = 1.

We define the vector bundle morphism [ : E → E∗ (over the identity of Q) as follows

[(e) = i(e)ΩV (x) + η(x)(e)η(x), for e ∈ Ex.

If x ∈ Q and Fx is a subspace of Ex, we may introduce the vector subspace F⊥x of Ex given by

F⊥x = ([(Fx))◦ = {e ∈ Ex | (−ieΩ
V (x) + η(x)(e)η(x))(f ) = 0,∀f ∈ Fx}.

In general, a section X satisfying (1) cannot be found in all points of Q. We define

Q1 = {x ∈ Q | ∃e ∈ Ex : ieΩ(x) = 0 and ieη(x) = 1} = {x ∈ Q | η(x)− iYx
Ω(x) ∈ [(Ex) = (E⊥x )◦}.

ABSTRACT
We develop a constraint algorithm for pre-cosymplectic Lie algebroids which is a generalization of the
constraint algorithms discussed in [2, 4]. We use our algorithm to present a geometric description of
vakonomic mechanics on Lie affgebroids. In fact, we obtain the dynamical equations for a vakonomic
system on a Lie affgebroid A. Moreover, in the particular case when A is the standard Lie affgebroid, we
recover the equations obtained in [7] (see also [1]).
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