Vakonomic Mechanics on Lie Affgebroids

Abstract

We develop a constraint algorithm for pre-cosymplectic Lie algebroids which is a generalization of the constraint algorithms discussed in [2, 4]. We use our algorithm to present a geometric description of vakonomic mechanics on Lie affgebroids. In fact, we obtain the dynamical equations for a vakonomic system on a Lie affgebroid \mathcal{A}. Moreover, in the particular case when \mathcal{A} is the standard Lie affgebroid, we recover the equations obtained in [7] (see also [1]).

LIE AFFGEBROIDS

Let $\tau_{\mathcal{A}}: \mathcal{A} \rightarrow Q$ be an affine bundle with associated vector bundle $\tau_{V}: V \rightarrow Q$. Denote by $\tau_{\mathcal{A}^{+}}: \mathcal{A}^{+}=$ $\operatorname{Aff}(\mathcal{A}, \mathbb{R}) \rightarrow Q$ the dual bundle which has a distinguished section $1_{\mathcal{A}} \in \Gamma\left(\tau_{\mathcal{A}^{+}}\right)$corresponding to the constant function 1 on \mathcal{A} and by $\tau_{\widetilde{\mathcal{A}}}: \widetilde{\mathcal{A}}=\left(\mathcal{A}^{+}\right)^{*} \rightarrow Q$ the bidual bundle.
Definition 1. A Lie affgebroid structure on \mathcal{A} consists of a Lie algebra structure $\llbracket \cdot, \cdot \rrbracket_{V}$ on $\Gamma\left(\tau_{V}\right)$, a \mathbb{R} linear action $D: \Gamma\left(\tau_{\mathcal{A}}\right) \times \Gamma\left(\tau_{V}\right) \rightarrow \Gamma\left(\tau_{V}\right)$ and an affine map $\rho_{\mathcal{A}}: \mathcal{A} \rightarrow T Q$, the anchor map, satisfying.

- $D_{X}\left[\bar{Y}, \bar{Z} \rrbracket_{V}=\left[D_{X} \bar{Y}, \bar{Z} \rrbracket_{V}+\left[\bar{Y}, D_{X} \bar{Z} \rrbracket_{V}\right.\right.\right.$,
- $D_{X+\bar{Y}} \bar{Z}=D_{X} \bar{Z}+\llbracket \bar{Y}, \bar{Z} \rrbracket_{V}$,
- $D_{X}(f \bar{Y})=f D_{X} \bar{Y}+\rho_{\mathcal{A}}(X)(f) \bar{Y}$,

A Lie affgebroid structure on $\tau_{\mathcal{A}}: \mathcal{A} \rightarrow Q$ induces a Lie algebroid structure $\left(\mathbb{[} \cdot, \rrbracket_{\widetilde{\mathcal{A}}}, \rho_{\widetilde{\mathcal{A}}}\right)$ on the bidual bundle $\widetilde{\mathcal{A}}$ s.t. $1_{\mathcal{A}} \in \Gamma\left(\tau_{\mathcal{A}^{+}}\right)$is a 1-cocycle (i.e. $d^{\widetilde{\mathcal{A}}_{1}}=0$). Conversely, if $\left(U,\left[\check{\mathcal{A}}, \cdot \rrbracket_{U}, \rho_{U}\right)\right.$ is a Lie algebroid over Q and $\phi: U \rightarrow \mathbb{R}$ is a 1-cocycle s.t. $\phi_{\mid U_{x}} \neq 0, \forall x \in Q$, then $\tau_{\mathcal{A}}: \mathcal{A}=\phi^{-1}\{1\} \rightarrow Q$ admits a Lie affgebroid structure s.t. $\left.\left(\widetilde{\mathcal{A}},[\cdot, \cdot]_{\widetilde{\mathcal{A}}}, \rho_{\widetilde{\mathcal{A}}}\right) \cong\left(U, \llbracket^{\prime}, \cdot\right]_{U}, \rho_{U}\right)$, the 1-cocycle $1_{\mathcal{A}} \equiv \phi$ and $\tau_{\mathcal{A}}: \mathcal{A} \rightarrow Q$ is modelled on the vector bundle $\tau_{V}: V=\phi^{-1}\{0\} \rightarrow Q$ (for more details, see [6]).

Example 1. Let $\tau: Q \rightarrow \mathbb{R}$ be a fibration. The 1-jet bundle $\tau_{1,0}: J^{1} \tau \rightarrow Q$ of local sections of $\tau: Q \rightarrow \mathbb{R}$ is an affine bundle modelled on the vector bundle $\pi=\left(\pi_{Q}\right)_{\mid V \tau}: V \tau \rightarrow Q$. Moreover, if t is the usual coordinate on \mathbb{R} and $\eta=\tau^{*}(d t) \in T^{*} Q$, then $J^{1} \tau \cong\{v \in T Q \mid \eta(v)=1\}$. Note that $V \tau=\{v \in T Q \mid \eta(v)=0\}$. Thus, the bidual bundle $\widetilde{J^{1} \tau} \cong T Q$. Therefore, the affine bundle $\tau_{1,0}: J^{1} \tau \rightarrow Q$ admits a Lie affgebroid structure. In fact, the Lie algebroid structure on $\pi_{Q}: T Q \rightarrow Q$ is the standard Lie algebroid structure and the 1-cocycle $1_{J^{1} \tau}$ is just the closed 1 -form η.

Now, let $\left(x^{i}\right)$ be local coordinates on Q and $\left\{e_{0}, e_{\alpha}\right\}$ be a local basis of $\Gamma\left(\tau_{\widetilde{\mathcal{A}}}\right)$ adapted to $\mathcal{1}_{\mathcal{A}}$, i.e., $1_{\mathcal{A}}\left(e_{0}\right)=$ 1 and $1_{\mathcal{A}}\left(e_{\alpha}\right)=0, \forall \alpha$. Denote by $\left(x^{i}, y^{0}, y^{\alpha}\right)$ the corresponding local coordinates on $\widetilde{\mathcal{A}}$. Then, the local equation defining the affine subbundle \mathcal{A} (resp., the vector subbundle V) of $\widetilde{\mathcal{A}}$ is $y^{0}=1$ (resp., $y^{0}=0$).

LAGRANGIAN MECHANICS ON LIE AFFGEBROIDS

We consider the Lie algebroid prolongation $\left(\tau_{\tilde{\mathcal{A}}}^{\tau_{\mathcal{A}}}: \mathcal{T} \widetilde{\mathcal{A}} \mathcal{A} \rightarrow \mathcal{A},[\cdot, \cdot]_{\tilde{\mathcal{A}}}^{\tau_{\mathcal{A}}}, \rho_{\widetilde{\mathcal{A}}}^{\tau_{\mathcal{A}}}\right)$ of the Lie algebroid $(\widetilde{\mathcal{A}}, \llbracket \cdot, \cdot]_{\widetilde{\mathcal{A}}}$, $\rho_{\widetilde{\mathcal{A}}}$) over the fibration $\tau_{\mathcal{A}}: \mathcal{A} \rightarrow Q$ (see [6]). We define a local basis $\left\{\mathcal{X}_{0}, \mathcal{X}_{\alpha}, \mathcal{V}_{\alpha}\right\}$ of $\Gamma\left(\tau_{\tilde{\mathcal{A}}}^{\tau_{\mathcal{A}}}\right)$:

$$
\mathcal{X}_{0}(\mathrm{a})=\left(e_{0}\left(\tau_{\mathcal{A}}(\mathrm{a})\right),\left.\rho_{0}^{i} \frac{\partial}{\partial x^{i}}\right|_{\mathrm{a}}\right), \quad \mathcal{X}_{\alpha}(\mathrm{a})=\left(e_{\alpha}\left(\tau_{\mathcal{A}}(\mathrm{a})\right),\left.\rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}}\right|_{\mathrm{a}}\right), \quad \mathcal{V}_{\alpha}(\mathrm{a})=\left(0, \frac{\partial}{\partial y^{\alpha}{ }_{\mathrm{a}}}\right),
$$

where $\rho_{0}^{i}, \rho_{\alpha}^{i}$ are the components of the anchor map $\rho_{\tilde{\mathcal{A}}}$. If $\left\{\mathcal{X}^{0}, \mathcal{X}^{\alpha}, \mathcal{V}^{\alpha}\right\}$ is the dual basis of $\left\{\mathcal{X}_{0}, \mathcal{X}_{\alpha}, \mathcal{V}_{\alpha}\right\}$, then \mathcal{X}^{0} is globally defined and it is a 1 -cocycle. We will denote by ϕ_{0} the 1 -cocycle \mathcal{X}^{0}.
One may also consider the vertical endomorphism $S: \mathcal{T}^{\widetilde{\mathcal{A}}_{\mathcal{A}}} \rightarrow \mathcal{T}^{\widetilde{\mathcal{A}}} \mathcal{A}$, as a section of the vector bundle $\mathcal{T}^{\widetilde{\mathcal{A}}} \mathcal{A} \otimes\left(\mathcal{T}^{\widetilde{\mathcal{A}}} \mathcal{A}\right)^{*} \rightarrow \mathcal{A}$, whose local expression is $S=\left(\mathcal{X}^{\alpha}-y^{\alpha} \phi_{0}\right) \otimes \mathcal{V}_{\alpha}$.
A section $\xi \in \Gamma\left(\tau_{\tilde{\mathcal{A}}}^{\tau_{\mathcal{A}}}\right)$ is said to be a second order differential equation (SODE) on \mathcal{A} if $\phi_{0}(\xi)=1$ and $S \xi=0$. In such a case, $\xi=\mathcal{X}_{0}+y^{\alpha} \mathcal{X}_{\alpha}+\xi^{\alpha} \mathcal{V}_{\alpha}$, where ξ^{α} are local functions on \mathcal{A}.
Now, a curve $\gamma: I \subseteq \mathbb{R} \rightarrow \mathcal{A}$ in \mathcal{A} is said to be admissible if $\left(i_{\mathcal{A}}(\gamma(t)), \dot{\gamma}(t)\right) \in \mathcal{T}_{\gamma(t)}^{\mathcal{A}} \mathcal{A}$, for all $t \in I$. Here, $i_{\mathcal{A}}: \mathcal{A} \rightarrow \widetilde{\mathcal{A}}$ is the canonical inclusion.
It is clear that if ξ is a SODE then the integral curves of the vector field $\rho_{\tilde{\mathcal{A}}}^{\tau_{\mathcal{A}}}(\xi)$ are admissible.
On the other hand, let $L: \mathcal{A} \rightarrow \mathbb{R}$ be a Lagrangian function. We introduce the Poincaré-Cartan 1-section $\Theta_{L} \in \Gamma\left(\left(\tau_{\tilde{\mathcal{A}}}^{\tau_{\mathcal{A}}}\right)^{*}\right)$ and the Poincaré-Cartan 2-section $\Omega_{L} \in \Gamma\left(\wedge^{2}\left(\tau_{\tilde{\mathcal{A}}}^{\tau_{\mathcal{A}}}\right)^{*}\right)$ associated with L defined by

$$
\Theta_{L}=L \phi_{0}+\left(d^{\mathcal{T}^{\tilde{\mathcal{A}}} \mathcal{A}} L\right)_{\circ} S, \quad \Omega_{L}=-d^{\mathcal{T}^{\tilde{\mathcal{A}}} \mathcal{A}_{\Theta_{L}} .}
$$

A curve $\gamma: I=(-\epsilon, \epsilon) \subseteq \mathbb{R} \rightarrow \mathcal{A}$ on \mathcal{A} is a solution of the Euler-Lagrange equations associated with L iff γ is admissible and $i_{\left(i_{\mathcal{A}}(\gamma(t)), \dot{\gamma}(t)\right)} \Omega_{L}(\gamma(t))=0$, for all t (see [6]).
If $\gamma(t)=\left(x^{i}(t), y^{\alpha}(t)\right)$ then γ is a solution of the Euler-Lagrange equations iff

$$
\frac{d x^{i}}{d t}=\rho_{0}^{i}+\rho_{\alpha}^{i} y^{\alpha}, \quad \frac{d}{d t}\left(\frac{\partial L}{\partial y^{\alpha}}\right)=\rho_{\alpha}^{i} \frac{\partial L}{\partial x^{i}}+\left(C_{0 \alpha}^{\gamma}+C_{\beta \alpha}^{\gamma} y^{\beta}\right) \frac{\partial L}{\partial y^{\gamma}},
$$

$C_{0 \alpha}^{\gamma}, C_{\beta \alpha}^{\gamma}$ being the (local) structure functions of $\llbracket \cdot, \cdot \rrbracket_{\tilde{\mathcal{A}}}$ with respect to the basis $\left\{e_{0}, e_{\alpha}\right\}$.
The Lagrangian L is regular iff the matrix $\left(W_{\alpha \beta}\right)=\left(\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}}\right)$ is regular or, in other words, the pair $\left(\Omega_{L}, \phi_{0}\right)$ is a cosymplectic structure on $\mathcal{T}^{\widetilde{\mathcal{A}}} \mathcal{A}$. In such a case, the Reeb section R_{L} of $\left(\Omega_{L}, \phi_{0}\right)$ is the unique Lagrangian SODE associated with L and, thus, the integral curves of $\rho_{\tilde{\mathcal{A}}}^{\tau} \mathcal{A}\left(R_{L}\right)$ are solutions of the Euler-Lagrange equations associated with $L . R_{L}$ is called the Euler-Lagrange section associated with L.

Constraint Algorithm for precosymplectic Lie Alge-

 BROIDSLet $\tau_{E}: E \rightarrow Q$ be a Lie algebroid, $\Omega \in \Gamma\left(\wedge^{2} \tau_{E}^{*}\right)$ be a presymplectic 2 -section $\left(d^{E} \Omega=0\right)$ and $\eta \in \Gamma\left(\tau_{E}^{*}\right)$ be a closed 1 -section ($d^{E} \eta=0$).

The dynamics of the precosymplectic system defined by (Ω, η) is given by a section $X \in \Gamma\left(\tau_{E}\right)$ satisfying the dynamical equations
$i_{X} \Omega=0$ and $i_{X} \eta=1$.
Now, we take an arbitrary section $Y \in \Gamma\left(\tau_{E}\right)$ s.t. $i_{Y} \eta=1$. Then, $\Omega=\Omega^{V}+\eta \wedge i_{Y} \Omega$. Thus, for $e \in E_{x}$: $i_{e} \Omega(x)=0$ and $i_{e} \eta(x)=1 \Leftrightarrow i_{e} \Omega^{V}(x)=-i_{Y_{x}} \Omega(x)$ and $i_{e} \eta(x)=1$.

We define the vector bundle morphism $b: E \rightarrow E^{*}$ (over the identity of Q) as follows

$$
b(e)=i(e) \Omega^{V}(x)+\eta(x)(e) \eta(x), \text { for } e \in E_{x}
$$

If $x \in Q$ and F_{x} is a subspace of E_{x}, we may introduce the vector subspace F_{x}^{\perp} of E_{x} given by $F_{x}^{\perp}=\left(b\left(F_{x}\right)\right)^{\circ}=\left\{e \in E_{x} \mid\left(-i_{e} \Omega^{V}(x)+\eta(x)(e) \eta(x)\right)(f)=0, \forall f \in F_{x}\right\}$.

In general, a section X satisfying (1) cannot be found in all points of Q. We define
$Q_{1}=\left\{x \in Q \mid \exists e \in E_{x}: i_{e} \Omega(x)=0\right.$ and $\left.i_{e} \eta(x)=1\right\}=\left\{x \in Q \mid \eta(x)-i_{Y_{x}} \Omega(x) \in b\left(E_{x}\right)=\left(E_{x}^{\perp}\right)^{\circ}\right\}$.

If Q_{1} is an embedded submanifold of Q, then there exists $X: Q_{1} \rightarrow E$ a section of $\tau: E \rightarrow Q$ along Q_{1} s.t. (1) holds. But $\rho(X)$ is not, in general, tangent to $Q_{1}(\rho: E \rightarrow T Q$ is the anchor map of the Lie algebroid E). Thus, we have that to restrict to $E_{1}=\rho^{-1}\left(T Q_{1}\right)$. If E_{1} is a manifold and $\tau_{1}=\tau_{\mid E_{1}}: E_{1} \rightarrow Q_{1}$ is a vector bundle, then $\tau_{1}: E_{1} \rightarrow Q_{1}$ is a Lie subalgebroid of $E \rightarrow Q$.
Now, we must consider

$$
Q_{2}=\left\{x \in Q_{1} \mid \eta(x)-i_{Y_{x}} \Omega(x) \in b\left(\left(E_{1}\right)_{x}\right)\right\}=\left\{x \in Q_{1} \mid\left(\eta(x)-i_{Y_{x}} \Omega(x)\right)(e)=0, \forall e \in\left(E_{1}\right)_{x}^{\perp}\right\}
$$

If Q_{2} is an embedded submanifold of Q_{1}, then there exists $X: Q_{2} \rightarrow E_{1}$ a section of $\tau_{1}: E_{1} \rightarrow Q_{1}$ along Q_{2} such that (1) holds. However, $\rho(X)$ is not, in general, tangent to Q_{2}. Therefore, we have that to restrict to $E_{2}=\rho^{-1}\left(T Q_{2}\right)$. As above, if E_{2} is a manifold and $\tau_{2}=\tau_{\mid E_{2}}: E_{2} \rightarrow Q_{2}$ is a vector bundle, it follows that $\tau_{2}: E_{2} \rightarrow Q_{2}$ is a Lie subalgebroid of $\tau_{1}: E_{1} \rightarrow Q_{1}$.
Consequently, if we repeat the process, we obtain a sequence of Lie subalgebroids (by assumption):

$$
\begin{aligned}
& \hookrightarrow Q_{k+1} \hookrightarrow Q_{k} \hookrightarrow \ldots \hookrightarrow Q_{2} \hookrightarrow Q_{1} \hookrightarrow Q_{0}=Q \\
& \\
& \left|\tau_{k+1}\right| \tau_{k} \\
& \hookrightarrow E_{k+1} \hookrightarrow E_{k} \hookrightarrow \ldots \hookrightarrow E_{2} \hookrightarrow E_{1} \hookrightarrow E_{0}=E
\end{aligned}
$$

where $Q_{k+1}=\left\{x \in Q_{k} \mid\left(\eta(x)-i_{Y_{x}} \Omega(x)\right)(e)=0, \forall e \in\left(E_{k}\right) \frac{1}{x}\right\}$ and $E_{k+1}=\rho^{-1}\left(T Q_{k+1}\right)$. If $\exists k \in \mathbb{N}$ s.t. $Q_{k}=Q_{k+1}$, then we say that the sequence stabilizes. In such a case, $\tau_{f}=\tau_{k}: E_{f}=E_{k} \rightarrow Q_{f}=Q_{k}$ is a Lie subalgebroid of $\tau: E \rightarrow Q$ and $\exists X \in \Gamma\left(\tau_{f}\right)$ (but non necessarily unique), satisfying (1).

Vakonomic equations

Let $\tau_{\mathcal{A}}: \mathcal{A} \rightarrow Q$ be a Lie affgebroid of rank n over a manifold Q of dimension $m, L: \mathcal{A} \rightarrow \mathbb{R}$ be a Lagrangian function and $\mathcal{M} \subseteq \mathcal{A}$ be an embedded submanifold of dimension $m+(n-\bar{m})$, the constraint submanifold, such that $\tau_{\mathcal{M}}=\tau_{\mathcal{A} \mid \mathcal{M}}: \mathcal{M} \rightarrow Q$ is a surjective submersion. Denote by \tilde{L} the restriction of L to \mathcal{M}.

Then, we can choose local coordinates $\left(x^{i}, y^{\alpha}\right)=\left(x^{i}, y^{A}, y^{a}\right)$ on \mathcal{A}, with $1 \leq \alpha \leq n, 1 \leq A \leq \bar{m}$ and $\bar{m}+1 \leq a \leq n$ such that $\mathcal{M} \equiv\left\{\left(x^{i}, y^{\alpha}\right) \mid y^{A}=\Psi^{A}\left(x^{i}, y^{a}\right), A=1, \ldots, \bar{m}\right\}$. Thus, $\left(x^{i}, y^{a}\right)$ are local coordinates on \mathcal{M}.

We consider the following diagrams

$$
\underset{\mathrm{pr}_{1}}{\mathcal{A}^{+}} \stackrel{\oplus}{Q}^{\mathcal{A}} \mathrm{pr}_{2}
$$

$$
\begin{gathered}
W_{0}=p r_{2}^{-1}(\mathcal{M})=\mathcal{A}^{+} \oplus_{Q} \mathcal{M} \\
\mathcal{A}_{1}^{+} \\
\pi_{2} \\
\mathcal{M}
\end{gathered}
$$

Denote by $\nu: W_{0} \rightarrow Q$ the canonical projection whose local expression is $\nu\left(x^{i}, y_{0}, y_{\alpha}, y^{a}\right)=\left(x^{i}\right)$.
We prolong $\pi_{1}: W_{0} \rightarrow \mathcal{A}^{+}$to a Lie algebroid morphism $\mathcal{T} \pi_{1}: \mathcal{T} \widetilde{\mathcal{A}}_{W_{0}} \rightarrow \mathcal{T} \widetilde{\mathcal{A}}_{\mathcal{A}}{ }^{+}$defined by $\mathcal{T} \pi_{1}=$ (Id,T π_{1}). Then, $\Omega=\left(\mathcal{T} \pi_{1}, \pi_{1}\right)^{*} \Omega_{\widetilde{\mathcal{A}}}$ is a presymplectic 2-section on $\mathcal{T}^{\mathcal{A}} W_{0}, \Omega_{\widetilde{\mathcal{A}}}$ being the canonical symplectic section associated with the Lie algebroid $\widetilde{\mathcal{A}}$ (see [5]).
The Pontryagin Hamiltonian is the function $H_{W_{0}}: W_{0} \rightarrow \mathbb{R}$ given by $H_{W_{0}}(\varphi, \mathrm{a})=\varphi(\mathrm{a})-\tilde{L}(\mathrm{a})$.
We define the 1-cocycle $\eta \in \Gamma\left(\left(\tau_{\widetilde{\mathcal{A}}}^{\nu}\right)^{*}\right)$ given by $\eta(\tilde{\mathrm{a}}, X)=1_{\mathcal{A}}(\widetilde{\mathrm{a}})$, for $(\tilde{\mathrm{a}}, X) \in \mathcal{T}^{\widetilde{A}} W_{0}$ and we consider the presymplectic 2-section $\Omega_{0}=\Omega+d^{\mathcal{T}^{\tilde{\mathcal{A}}} W_{0}} H_{W_{0}} \wedge \eta$ on $\mathcal{T}^{\widetilde{\mathcal{A}}} W_{0}$

The vakonomic problem (L, \mathcal{M}) on \mathcal{A} is find the solutions for the equations

$$
\begin{equation*}
i_{X} \Omega_{0}=0 \text { and } i_{X} \eta=1, X \in \Gamma\left(\tau_{\widetilde{\mathcal{A}}}^{\nu}\right) \tag{2}
\end{equation*}
$$

i.e., to solve the constraint algorithm for $\left(\mathcal{T}^{\widetilde{\mathcal{A}}} W_{0}, \Omega_{0}, \eta\right)$

Note that in the free case, i.e., $\mathcal{M}=\mathcal{A}$, we obtain a Skinner and Rusk formulation for the Lagrangian function L on the Lie affgebroid \mathcal{A}. It is a extension of the results obtained in [3].
The equations (2) only have sense in the points of W_{0} satisfying that $y_{a}=\frac{\partial \tilde{L}}{\partial y^{a}}-y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}, \forall a$. If $\left\{\mathcal{Y}_{0}, \mathcal{Y}_{\alpha}, \mathcal{P}_{0}, \mathcal{P}_{\alpha}, \mathcal{V}_{a}\right\}$ is the local basis of $\Gamma\left(\tau_{\widetilde{\mathcal{A}}}^{\nu}\right)$ given by
$\mathcal{Y}_{0}(\varphi, \mathrm{a})=\left(e_{0}(\nu(\varphi, \mathrm{a})), \rho_{0}^{i} \frac{\partial}{\partial x^{i} \mid \varphi}, 0\right), \quad \mathcal{Y}_{\alpha}(\varphi, \mathrm{a})=\left(e_{\alpha}(\nu(\varphi, \mathrm{a})), \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i} \mid \varphi}, 0\right)$,
$\mathcal{P}_{0}(\varphi, \mathrm{a})=\left(0, \frac{\partial}{\partial y_{0} \mid \varphi}, 0\right), \quad \mathcal{P}_{\alpha}(\varphi, \mathrm{a})=\left(0, \frac{\partial}{\partial y_{\alpha} \mid \varphi}, 0\right), \quad \mathcal{V}^{a}(\varphi, \mathrm{a})=\left(0,0, \frac{\partial}{\partial y^{a} a_{a}}\right)$,
then, a solution of (2) is of this form
$X=\mathcal{Y}_{0}+\Psi^{A} \mathcal{Y}_{A}+y^{a} \mathcal{Y}_{a}+X^{0} \mathcal{P}_{0}+\left[\rho_{\alpha}^{i}\left(\frac{\partial \tilde{L}}{\partial x^{i}}-y_{B} \frac{\partial \Psi^{B}}{\partial x^{i}}\right)+y_{\gamma}\left(C_{0 \alpha}^{\gamma}+\Psi^{B} C_{B \alpha}^{\gamma}+y^{b} C_{b \alpha}^{\gamma}\right)\right] \mathcal{P}_{\alpha}+X_{a} \mathcal{V}^{a}$.
A curve $\sigma: t \mapsto \sigma(t)=\left(x^{\imath}(t), y_{0}(t), y_{\alpha}(t), y^{a}(t)\right)$ on W_{0} is a solution of the vakonomics
equations associated with (L, \mathcal{M}) if

$$
\left\{\begin{array}{l}
\dot{x}^{i}=\rho_{0}^{i}+\Psi^{A} \rho_{A}^{i}+y^{a} \rho_{a}^{i}, \tag{3}\\
\dot{y}_{A}=\left(\frac{\partial \tilde{L}}{\partial x^{i}}-y_{B} \frac{\partial \Psi^{B}}{\partial x^{i}}\right) \rho_{A}^{i}-y_{\gamma}\left(C_{A 0}^{\gamma}+\Psi^{B} C_{A B}^{\gamma}+y^{a} C_{A a}^{\gamma}\right), \\
\frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial y^{a}}-y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}\right)=\left(\frac{\partial \tilde{L}}{\partial x^{i}}-y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}\right) \rho_{a}^{i}-y_{\gamma}\left(C_{a 0}^{\gamma}+\Psi^{B} C_{a B}^{\gamma}+y^{b} C_{a b}^{\gamma}\right) .
\end{array}\right.
$$

Example 2. Let $\tau_{1,0}: J^{1} \tau \rightarrow Q$ be the Lie affgebroid associated with the fibration $\tau: Q \rightarrow \mathbb{R}$. Thus, we can consider a constrained system (L, \mathcal{M}) on $J^{1} \tau$. In this case, the vakonomic equations (3) are just the equations obtained in [7] (see also [1]). Note that if $\left(t, q^{\alpha}\right)$ are local coordinates on Q which are adapted to the fibration τ, then $\left\{e_{0}=\frac{\partial}{\partial t}, e_{\alpha}=\frac{\partial}{\partial q^{\alpha}}\right\}$ is a local basis of $\widetilde{\mathcal{A}} \equiv T Q$ adapted to $1_{\mathcal{A}}=\eta$. Furthermore, we have that

$$
\rho_{\widetilde{\mathcal{A}}}\left(e_{0}\right)=\frac{\partial}{\partial t}, \quad \rho_{\widetilde{\mathcal{A}}}\left(e_{\alpha}\right)=\frac{\partial}{\partial q^{\alpha}}, \quad \llbracket e_{0}, e_{\alpha} \rrbracket_{\widetilde{\mathcal{A}}}=\llbracket e_{\alpha}, e_{\beta} \rrbracket_{\widetilde{\mathcal{A}}}=0
$$

Acknowledgements: MEC Grants: MTM2006-03322 and Network MTM2006-27467-E.

References

[1] M. Barbero-Liñán, A. Echeverría-Enríquez, D. Martín de Diego, M.C. MuñozLecanda, N. Román-Roy, Preprint (2007) arXiv:0705.2178.
[2] D. Chinea, M. de León, J. C. Marrero, J. Math. Phys., 35 (7) (1994), 3410-3447.
[3] J. Cortés, S. Martínez, F. Cantrijn, Phys. Lett. A, 300 (2002), 250-258.
[4] M. de León, J. Marín-Solano, J. C. Marrero, Differential Geometry and its Applications, 6 (1996), 275-300.
[5] M. De León, J.C. Marrero, E. Martínez, J. Phys. A: Math. Gen. 38 (2005), R241-R308.
[6] E. Martínez, T. Mestdag, W. Sarlet, J. Geom. and Phys. 44 (2002), 70-95.
[7] S. Vignolo, D. Bruno, Riv. Mat. Univ. Parma, (7) 1 (2002), 115-140.

