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Session 1

Session 1: Quantum gravity and Ashtekar variables

1 Why quantum gravity?

2 The case for diffeomorphism invariance.

3 A new point of view.

4 A prelude to quantization: Hamiltonian formulation of GR.

5 The SO(3)-ADM formulation.

6 GR in Yang-Mills phase space: Ashtekar variables.

7 Real or complex formulations?: The self-dual and Holst actions.
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Session 2

Session 2: Quantization with the new variables

1 General aspects of quantization.

2 Quantum configuration space for field theories. A simple example:
The scalar field.

3 Quantum configuration space for connection field theories.

4 The Hilbert space.

5 The Ashtekar-Lewandowski measure.

6 A useful orthonormal basis.
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Session 3

Session 3: Geometric operators

1 Elementary quantum operators.

2 The area operator.

3 The volume operator.

4 Other geometric operators.

Epilogue (remaining topics, open problems,...)

Dynamics: the quantum constraints.

Geometric observables.

Applications: LQC, black hole entropy,...
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Why quantum gravity?

Fundamental interactions

At the beginning of the XX century two long range forces were known:
gravity and EM. All the other ways in which matter interacts (con-
tact forces) were interpreted in terms of them after making some
hypotheses about the structure of matter.
The detailed understanding of the stability of matter required the in-
troduction of a new mechanics (Eduardo’s talk). This also led to the
necessity of quantizing fields (emission of radiation, atom deexcita-
tion, the physics of black bodies,...)

Two other fundamental interactions (the weak and strong forces)
were later recognized in the nuclear realm. Given the scale at which
they are manifest they are intrinsically quantum.
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Why quantum gravity?

Fundamental interactions and QFT’s

Weak, strong and EM forces are described by QFT’s. QED was the
first successful QFT. It contains classical EM in the certain limit.
It gives the detailed behavior of EM fields, their interactions with
charged particles, and the interaction of charged particles themselves.
Particles are described as “quantum excitations” of certain fields, i.e.
certain types of vectors in the Hilbert space used to quantize a field
theory.
This point of view was adopted after efforts to construct relativistic
quantum mechanics of particles failed. It has far reaching conse-
quences because it allows to describe processes in which particles are
created and destroyed (weak interactions).

The weak and strong forces can also be described by QFT’s such as
QCD. The resulting framework is known as the standard model of
particles and interactions.
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Why quantum gravity?

Key ingredients of QFT’s in standard formulations

LQED = ψ̄(i∂/−m)ψ + dA ∧ ∗dA︸ ︷︷ ︸
free

+ eψ̄A/ψ︸ ︷︷ ︸
int

Fock spaces

Hilbert space (Fock space) obtained from the free, non-interacting
theory. This free theory can be understood as a theory of an infinite
number of uncoupled harmonic oscillators.
The Hilbert space for the field theory is not a tensor product of the
Hilbert spaces for each harmonic oscillator (non-separability, reducibil-
ity of the representation for quantum commutators,...).

A different construction is use to build a Fock Hilbert space, [this IS
separable (more on this later)].

Fs(H) =
∞⊕

n=0

(
⊗n

s H
)

= C⊕H⊕ · · · ; Ψ = (ψ,ψa1 , ψa1a2 , . . .)

J. Fernando Barbero G. (IEM-CSIC) Session 1 September 6, 2007 7 / 37



Why quantum gravity?

Interpretation of states:

1-particle: |k〉 ∈ H. (the label k is the four-momentum)
n-particle: |k1, . . . , kn〉 ∈ ⊗n

sH, but also | k , . . . , k︸ ︷︷ ︸
n

〉.
vacuum |Ω〉 ∈ C.

Scalar product 〈Ψ|χ〉 = ψ̄χ+ ψ̄aχ
a + ψ̄a1a2χ

a1a2 + · · · .
Interactions: Higher order terms in the action (Feynman diagrams).

ψ

ψ

e A e

eψ̄A/ψ

e

ψ

ψ̄ ψ

A

interaction ∼ e4 Free
propagation

e is the coupling con-
stant. In terms of the
fine structure constant
α = e2/h̄c ≃ 1/137
this amplitude is ∼ α2

1
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Why quantum gravity?

Relevant physical observables (”in a straightforward experimental
sense”, i.e. cross sections, the S-matrix) are obtained as power series
in the relevant coupling constant (α for QED). It is in this sense
that the framework is perturbative.
An important background geometric object: The Minkowski metric
(Poincaré invariance). It appears, for example, in the Maxwell La-
grangian to define the Hodge ∗.
This symmetry is very important to select a quantization (there is
a huge non-uniqueness when one quantizes field theories due to the
existence of non-unitary equivalent representations of the algebra of
elementary variables). The vacuum is Poincaré invariant.

For free theories the construction can be generalized to other non-
Minkowskian (curved) backgrounds. Some work also exists for inter-
acting field theories in curved backgrounds. This allows to extend
some methods and results of QFT to weak, but nontrivial, gravita-
tional fields.
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Why quantum gravity?

The fourth (first?) interaction: gravity

What about gravity? (the first interaction that was successfully de-
scribed in a mathematical sense).

The “true” nature of gravity as spacetime geometry was recognized
by Einstein in his attempts to find a relativistic description of gravi-
tation (avoiding instant propagation and incorporating such pillars of
relativity as the existence of a fundamental velocity).

A very important first step towards this was Minkowski’s realization
of the fact that special relativity could be understood as geometry in
a spacetime endowed with a particular metric of signature (−+ ++)
[the Minkowski metric].

Is gravity described by a QFT at the fundamental level?
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Why quantum gravity?

Two points of view

The particle physicist point of view.

The relativist point of view.

The questions

1 Should gravity be quantized?

2 How do we do it?

3 Can gravity be quantized?

Particle physicist quantum gravity

Questions that a particle physicist would love to ask and answer with
a quantum theory of gravity:

What happens in collision experiments at arbitrary high energies [build
the DLC (Dream Linear Collider) and collide beams of say, e−, e+ all
the way to the Planck energy Ep = (~c5G−1

N )1/2 ' 1019GeV ...]
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Why quantum gravity? Should it...
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Why quantum gravity? Should it...

One expects that at a very high energy regime gravity should be
important (“feeble” interactions manifest themselves at very small
distances-high energies).

The energy of a photon such that its Schwarzschild radius RS =
2GNE/c4 (remember E = Mc2) is of the order of its wavelength
λ = hc/E is E ' (hc5/GN)1/2 i.e. the Planck energy!

Even if the gravitational quanta (whatever they may be) are difficult
to detect at least they should manifest themselves in the interactions
(something like this happens with Higgs, ...).

Once the interaction at this regime is understood one can do astropar-
ticle physics and study the early universe.
Unification.
String theory belongs in spirit to this side.
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Why quantum gravity? How...

Perturbative quantum gravity

Particle physicists tried to use the same approach that worked for the
other interactions to quantize gravity but failed.

The goal is to obtain S matrix elements (containing the physics of
particle interactions, giving predictions for accelerator experiments,
and providing necessary information for cosmology).

The use of perturbation theory for this means that one wants to
obtain cross sections as power series in GN .
For this to be at all possible there are some ”consistency” require-
ments (that can be met for the other interactions) referred to as
renormalizability.
One must be able to absorb infinities appearing in physical amplitudes
in a redefinition of the coupling constants. This works for the other
interactions and, in fact, fantastically accurate predictions, confirmed
by experiments, are obtained.
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Why quantum gravity? Can it...

Can it be done?

NO: perturbative quantum gravity is non-renormalizable

Maybe: String theory
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Why quantum gravity? Should it...

Relativist’s quantum gravity
What kind of phenomena would a relativist love to understand in a
quantum theory of gravity?

Singularities (in a sense QFT solves some problems associated with
singularities of the classical em field, Coulomb potential, infinite en-
ergy of a single charge... without introducing extended objects but
rather by changing the description of the interactions, particles are
still points but...).

Understand the high curvature regime of general relativity, the
nature of gravitational singularities, and, in particular, black holes and
the Big-Bang. The perception is that the appearance of singularities
in a physical theory is a clear indication that there is a better theory
(that reduces to the old one in a certain low energy, large distance
scale but supersedes it outside these regimes) where these are not
present. This includes astrophysical situations (black holes), and the
big bang (ambitious, huh!)
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Why quantum gravity? Should it...

What is the origin of black hole entropy and its detailed micro-
scopical description? Understand the process of black hole evap-
oration, in particular those issues related to unitarity and information
loss.
Define a mathematically rigorous quantum theory of the gravita-
tional field, in particular of general relativity.

Find useful quantum gravitational observables (hopefully leading
to experimental verification).

Solve the problem of time and, in general, the problem of spacetime
covariance in the canonical approach (time does not exist as an
external object in general relativity).
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Why quantum gravity? Should it...

As the gravitational field is a manifestation of space-time geometry
the quantization of general relativity will require us to understand the
fate of geometry after quantization or, in other words, the meaning
of quantized geometry.
Alternatively, one should understand the emergence of classical ge-
ometry at large scales from the purely quantum gravity theory (semi-
classical and classical regime).
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Why quantum gravity? How...

Use canonical quantization, in particular Dirac’s method to quan-
tize constrained systems.
The starting point is a Hamiltonian formulation for gravity. This
was first obtained in the early sixties by Arnowitt, Deser, and Misner
(the ADM formalism) after some pioneering work by Dirac.

Attempt then to write a quantum version of the constraints [appar-
ently referred to by one of his authors (Wheeler and DeWitt) as that
damned equation!].

Pioneering work on this provided lots of interesting insights but did
not produce a useful theory of QG and the lack of mathematical rigor
was at the same level as with perturbative approaches.
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Why quantum gravity? Can it...

Can it be done?

NO: Failure of quantum geometrodynamics

MAYBE! Loop quantum gravity (the subject of my talks).
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The case for diff-invariance

The background field method in perturbative QFT’s

A standard way to discuss renormalizability in standard QFT in an
efficient way is to use the so called background field method that
requires us to write the basic dynamical objects (i.e. fields) as

φ = φback + ϕ

with a FIXED background field φback and a dynamical ϕ.

This is most useful when gauge symmetries are present (as in QED,
EW model and QCD) because it allows us to find gauge invariant
counterterms in a very effective way (by using what are known as
covariant gauges).

Though ϕ is usually referred to as a “small perturbation” this is not
the case. In fact, this way of rewriting φ is a change of variables in
the Lagrangian. Notice that the usual actions for Yang-Mills theories
are polynomial so there are no convergence issues.
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The case for diff-invariance

For polynomial actions (basically all but the Einstein-Hilbert action
for gravity) it is not strictly necessary to use this, however in the
gravitational case the splitting of the metric as gab = gback

ab + hab is
strictly necessary to use the standard approaches because

Interactions in the perturbative approach are described by degree>2
monomials in the Lagrangian density. We have then to generate them
by a power series expansion in hab (this is where the “smallness” of
hab could play a role).

A background spacetime metric is a necessary to apply the usual
perturbative techniques. It provides the causal structure which is a
key ingredient for such important items as the spin-statistics theorem,
microcausality (commutation of fields at spacially separated points)...

The Minkowski metric plays a crucial if, somewhat backstage role,
because its presence allows these theories to wear the tag qualifying
them as ”relativistic”.
The representation theory of the Poincaré group (symmetries of the
Minkowski metric) ultimately allows us to talk about particle excita-
tions, mass and spin (gravitons).
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The case for diff-invariance

The use of the background field method in quantum gravity is very
problematic

What is the right background? For particle physics experiments it is
possibly OK to use Minkowski but if we are (as we do) interested in
the universe as a whole what is the right choice?
There is a clear conflict with some of the things that we expect to
understand from a quantum theory of gravity. Does it make any sense
to use a singular background? if not how would the quantized theory
describe the very high curvature regimes?

The question: can we quantize field theories without a background?

Problem 1: What is physically a diff-invariant field theory?
Problem 2: Why the absence of a background leads us to diff-
invariant models?
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A new point of view

We must learn how to quantize diff-invariant theories of gravity
i.e. without the help of a background metric.

A surprising development [Ashtekar 1986]. The best way to do this
for gravity is to describe it as a theory of SU(2) connections. For
historical reasons this approach is known as Loop Quantum Gravity
(LQG in short) and is the main subject of my lectures.

The label non-perturbative (which has become a trade mark for
LQG) refers to the fact that no splitting of a metric is used.

Notice, however, that some approximation scheme (perturbation the-
ory) may well have to be developed to obtain sensible and testable
(at least in principle) physical predictions.

Problem 3:

∫
R+

1

r
exp

[
−(log r +s2/2)2

2s2
− Nr

]
dr , (N →∞, s →∞).
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A prelude to quantization: GR Hamiltonian

The starting point for quantization of a system is to find a Hamiltonian
describing its evolution. We will consider pure GR (no matter by now).

Can we give a Hamiltonian formulation for GR?

YES

Derive it from the Einstein-Hilbert action S =
1

2κ

∫
M

e
√
σgR; κ =

8πGN

c3

Here M is a 4-dim manifold M = R × Σ (global hyperbolicity
[Geroch]). I will choose Σ to be a smooth, orientable, closed (i.e.
compact and without boundary) manifold, and σ is the space-time
signature (σ = −1 Lorentzian, σ = +1 Riemannian)

Introduce a “time function” t defining a foliation ofM by smooth 3-
dim hypersurfaces Σt diffeomorphic to Σ and a “time flow direction
ta” (a globally defined smooth vector field such that ta∇at = 1).
Alternatively one can introduce a congruence of spacetime filling curves.
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A prelude to quantization: GR Hamiltonian

Given a metric of signature (−+++) it defines a unit time-like normal
na on the points of each Σt .

Notation: I use Penrose notation (no coordinate charts!) (ta ∈
X(M), ta ∈ X∗(M), tab ∈ X(M)⊗ X(M)...)

Let us define:
The induced metric hab = gab + nanb (on vectors X a tangent to each
Σt we have habX

b = gabX
b := Xb, and habn

a = 0).

The lapse N := −gabt
anb = (na∇at)−1, ∇a denotes a torsion-free

connection on M.
The shift Na := ha

bt
b = ta − Nna.

Let us define also:
The unique, torsion-free, derivative operator Da on each Σt compatible
with hab.

This is given by DaT
a1,...ak

b1...b`
:= ha1

d1
· · · h e`

b`
h f

a ∇f T
d1,...dk

e1...e`
.

The extrinsic curvature Kab := h c
a ∇cnb = 1

2N (Lthab − 2D(aNb)).
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A prelude to quantization: GR Hamiltonian

The information contained in gab is the same as the one present
in (N,Na, hab) but these are “3-dimensional objects”. Let us rewrite
the E-H action in terms of these (The fiducial, non-dynamical volume
form e := eabcd is chosen so that it satisfies Lteabcd = 0). Remember
that Kab can be written as a “time derivative” of hab and DaNb.

S =

∫
M

e
√

hN[σ(3)R + KabK
ab − K 2] :=

∫
R

∫
Σt

(3)eLG :=

∫
R

LG

Here (3)eabc := tdedabc .
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A prelude to quantization: GR Hamiltonian

The Hamiltonian density

Canonical conjugate momenta

pab :=
∂LG

∂ḣab

=
√

h(K ab − Khab)

Hamiltonian density

S =

∫
R

∫
Σt

(3)eHG :=

∫
R

HG

HG = pabḣab − LG = N

[
σ
√

h
(3)

R +
1√
h

(pabpab −
1

2
p2)

]
−2NbDa(h−1/2pab)
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A prelude to quantization: GR Hamiltonian

No time derivatives of N and Na appear. They behave as Lagrange
multipliers enforcing the constraints:

σ
√

h (3)R +
1√
h

(pabpab −
1

2
p2) = 0 (Scalar constraint)

Da(h−1/2pab) = 0 (Vector constraint)

The evolution of hab and Kab is given by the Hamilton equations
(HG denotes the Hamiltonian)

ḣab =
δHG

δpab
, ṗab = −δHG

δhab

ḣab = {hab,HG}, ṗab = {pab,HG}
Notice that we have only the Lagrange multiplier terms (N and Na

are essentially arbitrary).
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A prelude to quantization: GR Hamiltonian

The final description (disclaimer)

Phase space Γ(hab, p
ab)

Symplectic structure: Ω =

∫
Σ

(3)eδhab ∧ δpab. Alternatively the

Poisson brackets are [these should be understood as brackets between
weighted versions of the configuration and momentum variables]

{hab(x), hcd(y)} = 0

{pab(x), hcd(y)} = δa(cδ
b
d)δ

3(x , y)

{pab(x), pcd(y)} = 0

Constraints (first class)

σ
√

h (3)R +
1√
h

(pabpab −
1

2
p2) = 0 (Scalar constraint)

Da(h−1/2pab) = 0 (Vector constraint)

They generate gauge transformations.
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The SO(3)− ADM formulation

Let us perform now a simple change of variables.

Introduce a triad i.e. three 1-forms e i
a, i = 1, 2, 3 defining a frame at

each point of Σ (det e 6= 0)

Write the metric as hab = e i
ae

j
bδij

Introduce Ẽ a
i = (det e)ea

i with ea
i eaj = δij (densitized inverse triad).

Define K i
a =

1

det e
KabẼ

b
j δ

ij .

pabḣab → ˙̃E a
i K i

a so the new variables are canonical.

We can rewrite the constraints in terms of these variables. Before
we do that it is important to realize that we have now local SO(3)
rotations of e i

a and K i
a that do not change neither hab nor Kab so

there must be extra constraints to generate them.

These can easily be found from the condition K[ab] = 0 (the 2nd

fundamental form is symmetric).
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The SO(3)− ADM formulation

Phase space Γ(K i
a, Ẽ

a
i )

Symplectic structure (Poisson brackets):

{K i
a(x),K j

b(y)} = {Ẽ a
i (x), Ẽb

j (y)} = 0

{Ẽ a
i (x),K j

b(y)} = δij δ
a
bδ

3(x , y)

Constraints (first class). R is the scalar curvature of hab := e i
aebi .

εijkK j
aẼ

ak = 0

Da

[
Ẽ a

k K k
b − δabẼ c

k K k
c

]
= 0 (1)

−σ
√

hR +
2√
h
Ẽ

[c
k Ẽ

d ]
l K k

c K l
d = 0
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GR in Yang-Mills phase space: Ashtekar vars.

Consider the transformation

γẼ
a
i = −1

γ
Ẽ a

i

γA
i
a = Γi

a + γK i
a

Γi
a is a SO(3) connection that defines a covariant derivative compatible

with the triad.
∂[ae

i
b] + εi jkΓj

[ae
k
b] = 0 can be inverted to get Γi

a is a SO(3).

γ ∈ C is known as the Immirzi parameter (γ).

The Poisson brackets between the new variables γA
i
a and γẼ

a
i are

{γAi
a(x), γA

j
b(y)} = {γẼ a

i (x), γẼ
b
j (y)} = 0

{γAi
a(x), γẼ

b
j (y)} = δij δ

b
a δ

3(x , y)

So this is a canonical transformation!
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GR in Yang-Mills phase space: Ashtekar vars.

Phase space Γ(γA
i
a,γ Ẽ a

i ) [smooth SO(3) connections and triads on
Σ, i.e. a Yang-Mills phase space]

Symplectic structure (Poisson brackets):
The variables γAai (x) and γẼ

b
j (y) are canonical;

Constraints (first class)

DaẼ
a
i = 0 Gauss law

F i
abẼ

b
i = 0 Vector c.

Ẽ
[a
i Ẽ

b]
j

[
εijkF k

ab +
2(σ − γ2)

γ2
(Ai

a − Γi
a)(Ai

a − Γj
b)

]
= 0, Scalar c.

Where DaẼ
a
i = ∂aẼ

a
i + εijkAj

aẼ
ak , and F i

ab = 2∂[aA
i
b] + εijkAajAbk is

the SO(3) curvature.
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GR in Yang-Mills phase space: Ashtekar vars.

Comments

GR in these new variables is a background independent relative
of SO(3) [or SU(2)] Yang-Mills theory.

The fact that the configuration variable is a connection is a
cornerstone of the formalism.

What happens with γ?

If σ = +1 (Riemannian signature) we can cancel the last term by
choosing γ = ±1. In this case the variables Ai

a and Ẽ a
i are real and

the scalar constraint takes a very simple form.

If σ = −1 (Lorentzian signatures, i.e. the real thing) we face two
choices:

If we want to remove the ugly term we have to take γ = ±i .

If we want to have real variables we have to live with complicated
constraints.
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GR in Yang-Mills phase space: Ashtekar vars.

Once it was understood that even the complicated form of the con-
straints could be handled (more or less...) the emphasis was placed
on the geometric meaning of the new variables.
The fact that the “internal” symmetry group is compact is very im-
portant in the construction of the Hilbert spaces used to quantize the
theory (a good reason to use real variables).

This parameter shows up in the definition of the area and volume
observables that are an essential ingredient of the formalism. In par-
ticular the entropy of a black hole is proportional to γ. By choosing its
value to reproduce the Beckenstein formula one can correctly obtain
the right entropy for any realistic (“astrophysical”) black hole.

It also appears in LQC.
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The self-dual and Holst actions

The new formulation can be derived from an action principle

The Holst action

S =

∫
M

e I ∧ eJ ∧ (εIJKLΩKL − 2

γ
ΩIJ)

e I takes values in a 4-dimensional R-vector space (I = 0, 1, 2, 3).

ωI
J takes values in the Lie algebra of SO(1, 3) (Lorentzian signature)

or SO(4) (Riemannian signatures).

εIJKL is the alternationg tensor in V .

ΩI
J = dωI

J + ωI
K ∧ ωK

J is the curvature 2-form of ωI
J .

If γ = i (Lor. case) or γ = 1 (Riem. case) the action can be written
in terms of the self-dual curvature of a self-dual connection ωI+

J .

This action is invariant under diffeomorphisms of M and “internal”
gauge transformations (SO(1, 3) or SO(4) depending on the signa-
ture).
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