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General aspects of quantization

QUANTIZATION (Dirac quantization for constrained systems)

Choose a Poisson ∗-algebra of elementary classical variables (family
of functions in phase space that separate points; in classical mechanics
one usually takes q and p).

Obtain a representation of the algebra in a kinematical Hilbert space
Hkin of “quantum states”

1 Find a suitable vector space of quantum states states.

2 Find an inner product. (This will lead us to ask ourselves for the
relevant measures).

3 Find physically interesting orthonormal bases where some important
operators take simple forms (for example are diagonal).

Find self-adjoint operators representing the constraints (defined in
Hkin or in the dual of a certain dense subspace of it) or the ele-
ments of the group of symmetry transformations. Find in this way an
appropriate physical Hilbert space Hphys of “quantum states”.
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General aspects of quantization

Extract physics. Though this is expressed in rather vague terms this
is a very important part of the whole business. It requires a lot of
work both on the physical and mathematical sides.

Find a (complete in some sense) set of self-adjoint operators in the
physical Hilbert space representing observables. Among them one
should select the best suited for experimental or observational mea-
surements. [concrete predictions with observable (astrophysics, cos-
mology) or experimental (?) consequences must be made!].

It also requires us to understand the classical limit (i.e. how we re-
cover the macroscopic space-time geometry form the quantum model).
This is straightforward for free theories (for example pure EM) but
highly non-trivial for interacting theories. Notice that even for simple
quantum mechanical systems such as the hydrogen atom this is highly
non-trivial (no coherent states are known in this case!).

Almost certainly a successful implementation of this program will re-
quire the development of some sort of approximation scheme (a new
perturbation theory !).
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The scalar field

I will concentrate on the construction of the kinematical Hilbert space

An example to put things in perspective: The free scalar field in
Minkowski space-time. This is very useful because the quantiza-
tion of this system is well understood from several points of view
[remember that we can quantize in a Fock space].

Here it is important to introduce the concept of ”quantum config-
uration space”.

For a quantum mechanical system with a finite number of d.o.f. this is
just the configuration space of the classical system. An example: For
a particle in a Coulomb potential (hydrogen atom) the Hilbert space
is L2(R3,dµ), (square integrable functions ψ : R3 → C with respect
to the Lebesgue measure in R3). (Remember that the scalar product

of ψ1, ψ2 ∈ L2(R3,dµ) is

∫
R3

ψ̄1ψ2dµ). The quantum configuration

space is just R3.

What would be the analogous choice for an infinite dimensional quan-
tum system (field theory)?
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The scalar field

Let us consider a real scalar field defined in R3 (it is not necessary to
introduce a concrete dynamics at this point but one can do so.)

We require that φ is sufficiently smooth (for example φ ∈ C∞0 (R3),
smooth functions of compact support). This is the classical con-
figuration space for this system: CKG .

Can we use it as our quantum configuration space?

NO
One would expect that the Hilbert space would be L2(CKG ,dµ) but we
have no obvious physically plausible choice of measure in this space
(the are subtleties too, for example there are no translation invariant
measures in infinite dimensional topological vector spaces).

There is useful procedure to construct an integration theory in infinite
dimensional spaces that can be used here and generalized for field
theories of connections.
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The scalar field

Cylindrical functions Ψ : CKG → R

Let S be a set of smooth probe functions e : R3 → R of rapid decay

and consider the linear functionals he [φ] : CKG → R;φ 7→
∫

R3

eφdµ.

Given a probe e some partial information on φ can be obtained by he .
For instance, if e is “peaked” around a certain point x0, he(φ) allows
us to get the approximate value of φ(x0).

A function Ψ : CKG → R will be called cylindrical if there exists a finite
number of functions e1, . . . , en ∈ S and a smooth ψ : Rn → R such
that for all φ ∈ CKG we have Ψ(φ) = ψ(he1 [φ], . . . , hen [φ]). In such
case we say that Ψ is cylindrical w.r.t. e1, . . . , en ∈ S.
They are called cylindrical because do not depend on all the “variables
φ(x)” but only on those probed or selected by the specific choice of e’s
(like f (x1, x2, x3) = x1 + x3

2 ).

Cylindrical functions w.r.t. a fixed set of probes α = (e1, . . . , en) span
a R-vector space that we denote Cylα.
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The scalar field

It is easy to turn Cylα into a Hilbert space. By taking a measure µn

in Rn we define for Ψ1,Ψ2 ∈ Cylα the scalar product

〈Ψ1,Ψ2〉 =

∫
Rn

ψ̄1ψ2 dµn

We consider now the much bigger space of all cylindrical functions ∪αCylα
(i.e. cylindrical w.r.t. some set of probes). We want to extend the previous
〈·, ·〉 to this space.

Some compatibility issues arise (a function can be cylindrical w.r.t
several sets of probes) and hence we must check that in these cases
the inner product is independent of the set of probes that we use to
define it. [notice that

∏n
i=1 µ

Leb
i will not work because (R, µLeb) is

not a finite measure space]

These compatibility conditions can be met (Gaussian measures).
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The scalar field

A given family of compatible measures {µn}n∈N allows us to define a
scalar product for any pair of cylindrical functions.
There may be many of them!, if we want to select one it is usu-
ally helpful to use some symmetry, such as Poincaré if we have the
Minkowski metric.
The Cauchy completion of (Cyl , 〈, 〉) will be taken as the Hilbert space
of quantum states H for the scalar field.

How do the elements of H look like?, Is it just L2(CKG ,dµ)?

They are not functions on CKG but rather functions on the topological
dual S ′ of the space of probes S (tempered distributions, notice that
CKG ⊂ S ′). This is now the quantum configuration space.

The Hilbert space is, in fact, given by H = L2(S ′, dµ) where dµ is
a regular Borel measure on S ′ that is an extension of the cylindrical
measure used in the construction.
There is a duality between the probes and the functions in the quan-
tum configuration space.
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The scalar field

The classical configuration space CKG is dense in S ′ but µ(CKG ) = 0!

The representation of configuration and momentum operators in this
space is straightforward:

Configuration operators act by multiplication.

ϕf :=

∫
R3

f ϕdµLeb → (ϕ̂f .Ψ)[ϕ] = ϕf Ψ[ϕ]

Momentum operators are given by derivations in the ring Cyl (These
derivations can be seen as vector fields in the quantum configuration
space.)

This quantization of the scalar field is equivalent to the Fock repre-
sentation mentioned above.

The main difference between this example and the standard situation in
the quantum mechanics of a system with a finite number of d.o.f. is the
necessity to enlarge the classical configuration space.

J. Fernando Barbero G. (IEM-CSIC) Session 2 September 13, 2007 10 / 31



Connection field theories

The idea is to follow the steps described above for the scalar field
to work with connections

Let us suppose that the we have a theory of SU(2) connections on a
spatial (3-dim) manifold Σ (that is our classical configuration space
is that of general relativity in terms of Ashtekar variables).

We introduce a set of probe functions as in the scalar case to start
by reducing our problem to one with a finite number of d.o.f.

Gauge invariance suggests that we use gauge invariant probes.

A natural choice is to use holonomies of the connection along curves
in Σ.
Using holonomies around a suitably large set of curves (graphs) we
can recover all the gauge invariant information contained in the SU(2)
connection.

Once the construction for cylindrical functions of connections is un-
derstood generalize it to as for the scalar field. This will force us
to find appropriate measures in the completion of Cyl and eventually
select one by using some sensible criterion.
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Connection field theories

A beautiful result. Diff-invariance (plus some plausible conditions on
the representation of the algebra of elementary variables) singles out
one:

The Ashtekar-Lewandowski measure µAL.

This is the content of the LOST&F uniqueness theorems.

Let us look at the construction of the Hilbert space in some detail.

Some preliminary material
SU(2) connections.
Holonomies.
The Haar measure.
Quantum mechanics on SU(2)
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Connection field theories

SU(2) Connections

We restrict ourselves to 3-dimensional orientable spatial manifolds Σ
so principal SU(2) bundles are trivial. This allows us to represent
connections on the bundle by su(2)-valued 1-form fields A B

aA (in the
fundamental representation of SU(2)).

It is convenient to write A D
aC = Ai

aτ
D

iC with the three Lie algebra
vectors τi := 1

2i σi ([τi , τj ] = εijkτk).

Holonomies

Connections tell us how to define parallel transport, in the present
case given a connection on the SU(2) bundle over Σ and a smooth
path γ : [0, 1]→ Σ from p to q in Σ a vector u(t) on the fiber over
γ(t) is parallel transported along the curve if

d

dt
u(t) + A(γ′(t))u(t) = 0,

[
d

dt
uA(t) + γ̇a(t)A B

aA (γ(t))uB(t) = 0

]
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Connection field theories

This can be solved as [u0 := u(0)]

u(t) =
∞∑

n=0

[
(−1)n

∫
t≥t1≥···≥tn≥0

A(γ′(t1)) · · ·A(γ′(tn))dtn · · · dt1

]
u0

:=

{
PExp[−

∫ t

0
A(γ′(s))ds]

}
u0 := hγ [A]u0

The linear map hγ [A] : Vp → Vq; u 7→ hγ [A]u is called the holonomy
along the path γ joining the points p and q.

It plays a fundamental role in gauge theories.
Under the action of local gauge transformations on the connection it
transforms as hγ [A′] = g(q)hγ [A]g(p)−1.

The holonomy around a loop (a curve from p to p) is an endomor-
phism of the fiber over p, and its trace, known as the Wilson loop
Wγ [A] := Trhγ [A] is gauge invariant.
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Connection field theories

Haar measures.

Any compact, Hausdorff, topological group has a unique (up to con-
stant factors) left and right invariant measure µH .

Compact Lie groups are finite measure spaces with the Haar measure.
[In the following we will normalize them so that µH(G ) = 1].

Quantum mechanics on SU(2).
Let us consider the quantization of a mechanical system with SU(2)
as its configuration space. We consider then the Hilbert space
L2(SU(2),dµH) (with the scalar product defined with the help of the
Haar measure).

Configuration operators (smooth functions on F : SU(2) →
C) act by multiplication: (f̂ ·Ψ)(g) = f (g)Ψ(g).

Momentum operators are associated to smooth vector fields on
SU(2). Given a vector field X ∈ X(SU(2)) the corresponding mo-
mentum operator is defined as the Lie derivative along X [plus a
divergence term w.r.t. the invariant volume form in SU(2)]:
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Connection field theories

(P̂X .Ψ)(g) = i [LX Ψ +
1

2
(divX )Ψ](g).

For a given element in the Lie algebra v ∈ su(2) it is possible to define
two natural left and right invariant vector fields Lv and Rv on SU(2).

If we consider the left and right invariant vector fields naturally defined by
each element of the orthonormal basis (w.r.t. the Cartan-Killing metric
ηij) given by τi , i = 1, 2, 3 they define the (commuting) operators L̂i and

R̂i . The divergence terms corresponding to these are zero.

An interesting operator in L2(SU(2),dµH) is the quantum Hamiltonian

Ĵ2 = ηij L̂i L̂j = ηij R̂i R̂j = −4

This is describes the dynamics of a free particle on SU(2), i.e. the motion
about the center of mass of a solid with I1 = I2 = I3 (spherical top).
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Connection field theories

There is a useful orthogonal decomposition of the Hilbert space
L2(SU(2), dµH). For a given vector v ∈ su(2) the set of operators
{Ĵ2, L̂v , R̂v} commute. This means that we can find an orthonormal

basis of simultaneous eigenstates D
(j)
m,n of these.

This orthonormal basis of L2(SU(2),dµH) is given by functions D
(j)
mm′ :

SU(2) → C : g 7→ D
(j)
mm′(g), j ∈ 1

2N ∪ {0}, and for each j we have
m,m′ ∈ {−j ,−j + 1, . . . , j − 1, j}.

〈D(j)
mm′ ,D

(`)
nn′〉 =

∫
SU(2)

D
(j)

mm′(g)D
(`)
nn′(g)dµH = δj`δmnδm′n′ .

These are eigenfunctions with eigenvalue j(j + 1) of −∆ where ∆ is
the Laplacian on SU(2) defined with the help of ηij .

m and m′ are the eigenvalues of L̂v and R̂v .
This is a consequence of the Peter-Weyl theorem (an important result
of harmonic analysis on groups).
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Connection field theories: Graphs

A graph is defined as a finite set of edges (compact, 1-dimensional, ana-
lytic, oriented, embedded submanifolds of Σ) that only intersect in the end
points.

edges graph

1

Connection dynamics on a graph γ

Consider a fixed graph γ on Σ with nγ edges and vγ vertices, and
restrict (i.e. pull-back) connections and gauge transformations to γ.

For each edge eI , I = 1, . . . , nγ in γ we can get the holonomy of the
connection heI

[A] ∈ SU(2) so a SU(2) connection on Σ defines a
map Aγ : γ → [SU(2)]nγ .

Gauge transformations “act” only on the vertices of the graph.
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Connection field theories

Given a SU(2) connection on Σ we can get a finite number of group
elements associated to each edge and we are left with residual gauge
transformations at the vertices of the graph. We will use this con-
struction to define appropriate cylindrical functions for connection
theories.
Let us fix a graph γ with nγ edges and vγ vertices.

Definition of Cylγ
Let us consider as our configuration space the space A of smooth
SU(2) connections on Σ.

We will say that a function Ψ : A → C is cylindrical if there is a
graph γ with nγ edges and a function ψ : [SU(2)]nγ → C such that
Ψ(A) = ψ(he1 [A], . . . , henγ

[A]).

Cylindrical functions depend on the connection A only trough its
holonomies along the edges of γ. The holonomies along the edges
play the role of “gauge covariant probes” to obtain (partial) informa-
tion about the connections on Σ.
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Connection field theories

Examples of cylindrical functions associated to graphs

1 The Wilson loop:

Consider a loop γ j = 1
2

1

Take the trace of the holonomy around γ, Wγ [A] := Tr [hγ [A]] in the
fundamental representation (j = 1/2). (The result is independent of
the point that you choose, so it really corresponds to an edge without
a marked point).

If hγ [A] =

[
a + id c + ib
−c + ib a− id

]
→Wγ [A] = 2a

(a2 + b2 + c2 + d2 = 1)
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Connection field theories

2 There is no need to restrict oneself to the fundamental representa-
tion of SU(2). If one takes the representation D(j), j ∈ 1

2N ∪ {0}
given by unitary matrices in M2j+1(C) one can compute W j

γ [A] :=
Tr [D(j)(hγ(A))].

In this case we label the loop γ with j
j

1
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Connection field theories

3 We have now D
(1/2)
AB (he1(A)), D

(1)
ij (he2(A)), D

(1/2)
CD (he3(A)) where the

indices A; B; C ; D ∈ {−1/2, 1/2}, i , j ∈ {−1, 0, 1}.

1

1
2

1
2

1

To get a complex number we can just
choose some fixed components for each
of the matrices (in which case the func-
tion would not be invariant under SU(2)
transformations on the vertices).

If we want to get a gauge invariant object wee must contract the indices
with a SU(2) invariant object in D(1/2) ⊗D(1) ⊗D(1/2). [this is called an
intertwinner and can be constructed from symmetrized products of the
antisymmetric objects εAB and εAB ].

In this case the (essentially) unique choice is σi
ACσ

j
BD (for vertices of degree

3 these objects can be written in terms of Clebsh-Gordan coefficients or
Wigner 3j symbols. For higher degrees there are many more choices, one
has to consider nj symbols).
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Connection field theories

Comments

A cylindrical function w.r.t. a graph γ is also cylindrical w.r.t. any
graph γ′ that contains γ. We will have to take this into account when
we define orthonormal bases on the final Hilbert space.
We want to turn the vector space Cylγ into a Hilbert space.

The role played by Gaussian measures for the scalar field is played
now by the Haar measure on SU(2). Notice the importance of the
fact that SU(2) is compact!

For two functions Ψ1,Ψ2 in Cylγ we define the scalar product

〈Ψ1,Ψ2〉 =

∫
[SU(2)]nγ

nγ∏
j=1

dµH(gj)ψ̄1(g1, . . . , gnγ )ψ2(g1, . . . , gnγ )

∏n
j=1 dµH(gj) is the Haar measure on [SU(2)]nγ

The Hilbert space for a given graph γ will be called Hγ .
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Connection field theories

Useful operators in Hγ
Given a graph we have built a Hilbert space as a tensor product of
the L2(SU(2),dµH) associated to each edge.

We can build operators in Hγ from those defined in each
L2(SU(2), dµ). These are useful to label orthogonal subspaces in
a direct sum decomposition of Hγ , label the elements of useful or-
thonormal bases, and also to build the geometric operators associated
to areas and volumes.

Operators associated to edges:

Choose an (oriented) edge eI , one of the vertices v of eI , and a basis τi
in su(2). We define Ĵ

(v ,eI )
i as an operator acting on L2(SU(2),dµ)eI

.

It is L̂i if eI starts at v and R̂i if eI ends at v .

Ĵ2
e := ηij Ĵ

(v ,e)
i Ĵ

(v ,e)
j with eigenvalues je(je + 1), je ∈ 1

2N ∪ {0}. Those
corresponding to different edges obviously commute.

We can use these to writeHγ = ⊕jeI
Hγ,jeI (dimHγ,jeI > 1 generically).
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Connection field theories

Operators associated to vertices

Choose a vertex v and consider all the edges ẽ leaving or arriving at it.

Define Ĵv
i =

∑
ẽ@v

Ĵ
(v ,ẽ)
i and Ĵ2

v = ηij Ĵ
v
i Ĵv

j . These operators have eigen-

values jv (jv + 1) and commute with the Ĵ2
e .

We can use these them to further split Hγ as Hγ = ⊕jeI ,jv`
Hγ,jeI ,jv` .

We can build other operators at the vertices by considering only a subset
of the edges arriving at any one of them. These can be used to further
decompose the subspaces Hγ,jeI ,jv` .
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The Hilbert space

The definition of Cyl for SU(2) connection theories

As before we consider now the space of all cylindrical functions w.r.t.
any graph Cyl = ∪γCylγ . A very large space.

In order to define the scalar product for any pair of cylindrical func-
tions (associated to possibly different graphs γ1 and γ2) we:

Introduce a third graph γ3 such that γ1 ⊂ γ3 and γ2 ⊂ γ3.

Both cylindrical functions are cylindrical w.r.t. γ3.

Use the previous definition for γ3.

The procedure gives a unique result independent of the choice of
γ3 owing to the left and right invariance of the Haar measure and
the fact that we choose it normalized (the compatibility conditions
relevant in this case can be met).

The scalar product of cylindrical functions associated to different
graphs is automatically zero.

Our kinematical Hilbert space will be the Cauchy completion Cyl
of Cyl with this scalar product.
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The Hilbert space

Characterization of the elements of Cyl :

Can we think of it as some L2(Ā, dµ)?

YES
What is the quantum configuration space Ā? (there are different
characterizations:) we give one here:

Its elements are quantum connections Ā that assign to any e ∈ Σ an
element in SU(2) such that:

Ā(e2 ◦ e1) = Ā(e2)Ā(e1), Ā(e−1) = (Ā)−1(e)
No other conditions (in particular no continuity requirements!)

Given any quantum connection and any graph there is a smooth
connection A such that Ā(e) = A(e) for all the edges.

This Hilbert space is non-separable (“very big”). Can we really
handle it? Roughly speaking the big size problem is somehow tamed
by the fact that we have diff-invariance.
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The Hilbert space and the measure

This space has another beautiful description: The Abelian algebra of
cylindrical functions can be extended to an abelian C ∗-algebra with
unit Cyl . This can be represented as the space of continuous functions
over a compact, Haussdorf space called (the spectrum of the algebra
sp(Cyl)). We have Ā = sp(Cyl)

What about the measure?

There are compatibility issues of the type described for the scalar field
but complicated by the fact that our setting is intrinsically non-linear
now. Technically one has to use projective techniques.
The family of induced Haar measures that we have introduced for
each graph defines a regular Borel measure on Ā which is invariant
under the natural action of diffomeorfisms on Σ. This is known
as the Ashtekar-Lewandowski measure. A remarkable result and
somehow unexpected due to the results on the non-existence of trans-
lation invariant measures in topological vector spaces.

J. Fernando Barbero G. (IEM-CSIC) Session 2 September 13, 2007 28 / 31



The Hilbert space and the measure

One can in principle construct several families of diff-invariant mea-
sures associated to knot invariants.
µAL is unique under natural assumptions (LOST theorem) (after the
introduction of the holonomy-flux algebra).

In the Gel’fand topology in Ā the space of smooth connections A is
densely embedded in Ā [Marolf&Mourão] but has zero measure w.r.t.
µAL!

The Hilbert space L2(Ā,dµAL) carries a natural representation the
group of SU(2) gauge transformations and diffeomorphisms [with
some technical qualifications]. The scalar product is invariant un-
der these and the representation is unitary.
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A useful orthonormal basis

An orthonormal basis on H
It is not possible to directly write H = ⊕γHγ because the Hilbert
space Hγ2 is a non-trivial subspace of Hγ1 if γ2 ⊂ γ1.

This can be easily solved by takingH′γ , the subspace ofHγ orthogonal
to the subspace H′γ̃ associated to every γ̃ strictly contained in γ.

There is a simple characterization of this space in terms of the eigen-
values of the operators Ĵ2

e associated to the edges of γ and the Ĵ2
v

associated to any spurious vertices that may be present (vertices that
do nothing but “split an edge at a point where it is analytic”).
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A useful orthonormal basis

For a fixed graph γ the Peter-Weyl theorem tells us that the

product of the functions D
(j1)
m1n1(g1) · · ·D(jnγ )

mnγ nnγ
(gnγ ), j1, . . . , jnγ ∈

1
2N ∪ {0}, mi , ni ∈ ji + Z with −ji ≤ mi , ni ≤ ji are the elements of
an orthonormal basis of Hγ .

The orthonormal basis in the full Hilbert space H would then be:⋃
γ

{
D

(j1)
m1n1⊗· · ·⊗D

(jnγ )
mnγ nnγ

: ji ∈
1

2
N, mi , ni ∈ ji+Z, −ji ≤ mi , ni ≤ ji

}
(notice that the ji 6= 0)

The theory of angular momentum in angular mechanics can be used
to look for other bases associated to other commuting sets of angular
momentum operators of the type described before.
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