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Elementary quantum operators

Elementary classical operators.

Classically A consists of all smooth SU(2) connections on Σ.

The phase space is a cotangent bundle T ∗(A).

To write the basic Poisson brackets between configuration and mo-
mentum variables we put.

3A[v ] :=

∫
Σ

Ai
aṽ

a
i , ṽa

i : Σ→ su(2)∗

3E [f ] :=

∫
Σ

Ẽ a
i f i

a , f i
a : Σ→ su(2)

{3A[v ],3 A[v ′]} = {3E [f ],3 E [f ′]} = 0, {3A[v ],3 E [f ]} =

∫
Σ

ṽa
i f i

a

(Usually they are written in a distributional form).
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Elementary quantum operators

This Poisson algebra is not suitable for quantization.
These variables are not gauge covariant in the present non-abelian
context.

If one tries to build cylindrical functions with them (by exactly following
the steps of the scalar field construction) there are problems because
they are not integrable w.r.t. known diff-invariant measures.

One has to look for appropriate phase space variables.

How? Using “distributional” smearing fields (with support in lower
dimensional submanifolds of Σ) but then one must be very careful...

Other types of smearings:

1-dimensional ones for the connection (holonomies).

2-dimensional ones for the triads (fluxes) E [S , f ] :=

∫
S

eabi f
idSab,

with e i
ab = ηabc Ẽ

ci .
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Elementary quantum operators

We must make a choice of some configuration variables and some
momentum variables in such a way that:

They separate points in phase space.
The set of configuration and momentum variables is closed under the
action of the Poisson brackets (and, hence, we have a Lie algebra of
elementary variables).

The choice of configuration variables is quite straightforward: we
will take cylindrical functions (which in particular suffice to separate
points in A).

The choice of momentum variables is subtler.

It is natural to choose momenta as vector fields related to the config-
uration variables that we have considered (P(v), with v ∈ X(Cyl)).

For example, the Hamiltonian vector fields for the 3-dimensional
smearings of the triads introduced above are well defined and, hence,
we can compute {Ψα,

3 E [f ]} (α denotes a graph), however this is
not a cylindrical function. We must make another choice.
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Elementary quantum operators

Let us consider instead a 2-dimensional smearing. This can be de-
fined rigorously by taking certain limits of the 3-dimensional smearings
considered at the beginning

lim
ε→0
{Ψα,

3E [εf ]}.

Here we use a family of smearing functions εf i
a depending on a real pa-

rameter ε and such that in the limit ε→ 0 they tend to a distribution
with support on a surface [εf i

a (x , y , z) = hε(z)(∇az)f i (x , y)]

The previous limit is

lim
ε→0
{Ψα,

3E [εf ]} =
1

2

∑
p

∑
Ip

κ(Ip)f i (p)XIp .ψ (1)

where:
p are the intersection points of the graph and the surface.
eIp are the edges at each intersection point Ip = 1, . . . , np.
κ(Ip) is +1 if the edge lies completely “above” S , −1 if it is “below”
S and 0 it it is tangent (S is oriented).
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Elementary quantum operators

XIp .ψ is the action of the i-th left (resp. right) invariant vector field
on the Ip-th argument of the function ψ : [SU(2)]N → C if eIp points
away from (resp. towards) S .

Notice that we have obtained a cylindrical function so we are moving
in the right direction, hence, if we manage to interpret the previous
limit as the Poisson bracket of Ψα with something this would be a
good candidate for a momentum variable

The previous choice of εf i
a suggests that this variable will be the flux

E [S , f ] associated to a certain f i and a choice of a surface S .

This is indeed the case when some conditions on the f i ’s, and the
surface S are imposed. These are:

The functions f i must be continuous.

The surface S must have the form S̄ − ∂S̄ with S̄ a compact ana-
lytic oriented 2-dim submanifold of Σ. In particular it must have no
boundary.
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Elementary quantum operators

The analyticity condition (remember that we are working with piece-
wise analytic curves to define the holonomies) is used to avoid the
appearance of infinite (non-trivial) intersections of S with the edges
of the graph α.
What happens now with the Poisson bracket between two flux
operators?

One would naively expect {E [S , f ],E [S ′, f ′]} = 0 because “momenta
commute”. However this cannot be true for 2-dim smeared variables,
the reason: this is incompatible with the expression that we have found
for {Ψα,E [S , f ]} because the Jacobi identity would be violated.

This can be seen by computing for a simple cylindrical function (a
Wilson loop Wα)

{{E [S , f ],E [S , g ]},Wα}+

6=0︷ ︸︸ ︷
{{Wα,E [S , f ]},E [S , g ]}+ {{E [S , g ],Wα},E [S , f ]}

The last two terms can be explicitly computed with the help of (1)
and, generically, they are not zero. Hence the first term cannot be
zero if we want the Jacobi identity to be satisfied.
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Elementary quantum operators

What is going on here?

For classical finite dimensional systems there is a natural isomorphism
between the space of momentum variables and a space of suitably
regular vector fields on the configuration space.
Momenta can be thought of as vector fields in the configuration space
when the phase space is a cotangent bundle (a fact that is translated
into the action of the momenta operators after the quantization).

We can write variables of the type P(v)(q, p) = va(q)pa given a
fixed vector field va on the configuration space. Now if f , f ′ denote
suitable regular functions on the configuration space C and v , v ′ are
regular vector fields we have

{Q(f ),Q(f ′)} = 0, {Q(f ),P(v)} = Q(Lv f ), {P(v),P(v ′)} = −P(Lvv ′)

.
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Elementary quantum operators

Notice that these operations refer only to structures in the configu-
ration space.
It is natural then to associate a vector field XS ,f with the flux variables
E [S , f ]. We do this by taking

XS,f ·Ψα :=
1

2

∑
p

∑
Ip

κ(Ip)f i (p)XIp .ψ

This is a one to one correspondence.
Comments:

XS,f is a vector field in the sense that it is a derivation on the ring Cyl .

The commutator of two derivations is a derivation and they form a Lie
algebra (no problem with the Jacobi identity.)

Only those derivations that can be obtained by taking finite linear
combinations and finite number of brackets are considered here.
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Elementary quantum operators

The vector fields XS ,f do not commute on Cyl! In fact:

[XS,f ,XS ′,f ′ ](Ψ) =

1

4

∑
p

f i (p̄)f ′i (p̄)εijk

(∑
I uu′
p

X k
I uu′
p
−
∑
I ud′
p

X k
I ud′
p
−
∑
I du′
p

X k
I du′
p
−
∑
I dd′
p

X k
I dd′
p

)
(ψ)

This solves the issue, it is in this precise sense that the momentum
functions given by the fluxes do not commute

Comments:

It is straightforward to see that generic derivations need not corre-
spond to any phase space function. For example, the commutator
[XS1,f1 ,XS2,f2 ] with both surfaces intersecting on a curve is a derivation
on Cyl but its action is only non-trivial on graphs with edges passing
trough S1 ∩ S2. The commutator has now 1-dim support and then is
not a linear combination of fluxes E [S , f ].
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Elementary quantum operators

The set of all derivations would be too large in a definite sense (one
would need to incorporate some extra conditions that would make
things more complicated).
The set formed by the XS1,f1 is sufficiently small and avoids these
difficulties (this is like using ∂x , ∂y , and ∂z in quantum mechanics of
a particle.)
The (Cyl ,XS,f ) variables suffice to separate points in phase space.

The reason on the non-commutativity is related to the way the 2-dim
smeared things are obtained as limits from the 3-dim ones. If we
denote 3X [f ] the vector fields associated with 3E [f ] we have

[XS2,f2 ,XS1,f1 ].Ψα =

lim
ε2→0

3X [ε2f ]( lim
ε1→0

3X [ε1f ] ·Ψα)− lim
ε1→0

3X [ε1f ]( lim
ε2→0

3X [ε2f ] ·Ψα)

It can be seen that the action of vector fields and taking limits does
not commute when acting on cylindrical functions and, hence, the
previous expression is not zero.
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Elementary quantum operators

A final comment. The variables that we have just introduced are in
a sense hybrid. Whereas the momentum variables –the fluxes– are
linear in the triad field, the configuration variables, obtained from
holonomies of the connection, are non-linear (exponential). When we
go to the quantum theory the representation that we will be using is
something like using q and exp(iβp) as the elementary variables for
the quantum particle.
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Elementary quantum operators

Quantization is straightforward, configuration variables represented
by complex valued cylindrical functions on Ā act by multiplication on
the wave functions

(f̂ Ψ)[Ā] = f (Ā)Ψ[Ā]

The action of momentum operators (fluxes) is given by

(Ê [S , f ]Ψ)[Ā] = i{E [S , f ],Ψ}[Ā] =
1

2

∑
v

f i (v)
∑
e@v

κ(e)Ĵ
(v ,e)
i Ψ[Ā]

The sum is done over the vertices of α where it intersects S . This
operator is essentially self adjoint in its domain Cyl (2) and, hence,
admits a unique extension to de full H.
Commutators are represented as i~ times the classical Lie bracket
between the corresponding classical variables.
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Elementary quantum operators

There are no anomalies in the quantization; commutators exactly
mimic the Poisson algebra between classical elementary variables
(known as the holonomy algebra or ACZ algebra).

There is an important uniqueness result related to this:

The LOST theorem

There exist exactly one Yang-Mills gauge invariant and diffeomorphism
invariant state on the quantum holonomy-flux ∗-algebra U.

The key importance of this result is that it shows that the Ashtekar-
Lewandowski measure µAL is the only diff-invariant measure that sup-
ports the representation of the holonomy-flux algebra.
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Geometric operators

I will start now discussing geometric operators (quantum Rieman-
nian geometry), we are finally doing the promised quantum geometry!

Four of them are obviously desirable to understand:

The length and angle operators
The area operator
The volume operator

General considerations

They can all be rigourously defined in the Hilbert space used above.
They have discrete spectra.
The generalized spin network basis introduced before is well adapted
to their description.
Two of them play an additional important role in applications:
The area operator is important in the computation of black hole
entropy.
The volume operator is a basic ingredient for the quantization of
the scalar constraint.

For these last two reasons I will concentrate on areas and volumes.
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Area operator

Consider a two-dimensional surface embedded in S ⊂ Σ. We will
require it to be closed.

The densitized triad Ẽ a
i encodes the metric information. Hence we

can write the area of a surface in terms of it.
If we use coordinates on the surface σ1 and σ2 and the choose a
normal na to the points of S the area, as a function(al) of Ẽ a

i takes
the form

AS [Ẽ a
i ] =

∫
S

(Ẽ a
i Ẽb

j δ
ijnanb)1/2

We want now to quantize the operator AS [Ẽ a
i ]. This means that we

have to define its action on the vectors in H. To this end we want
to know its action on the elements of the orthonormal basis that we
have introduced above.
A reasonable way to approach this problem is trying to express it in
terms of the flux operators E [S , f ].
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Area operator

The idea is to decompose S in N two dimensional cells SI of “small
coordinate” size.
Use the three Lie algebra vectors τi as test fields f i and consider the
flux variables E [SI , τ

i ] on each cell.

Consider

AN [S ] := γ

N∑
l=1

(E [SI , τi ]E [SI , τj ]η
ij)1/2.

This is an approximate expression for the area (“Riemann sum”) in
the sense that if the number of cells goes to infinity in such a way
that their coordinate size goes to zero uniformly we recover the area
in the limit N →∞.
To quantize we take advantage of the fact that in each cell
E [SI , τi ]E [SI , τj ]η

ij is a positive self adjoint operator on H (it then
has a well defined square root).
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Area operator

The action of this operator on an element of Hα for a fixed graph is
straightforward to obtain. The idea is to refine the partition so that
every elementary cell has, at most, one transverse intersection with
the graph. In this case the only terms contributing come from the SI

that intersect α. Once this point is reacher further refinements do
nothing.
The resulting operator can be written as the following sum over the
vertices of α that lie on S

ÂS,α = 4πγ`2
P

∑
v

(−4S,v ,α)1/2

where 4S ,v ,α is an operator given by a quadratic combination of the

L̂i and R̂i operators associated to each edge leaving or arriving at the
v ’s appearing in the previous sum.
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Area operator

Comments:
The previous expression is defined on Hα for a fixed graph. In order
to see if it is defined on the whole Hilbert space H one has to check
some consistency requirements related to the fact that a function may
be cylindrical w.r.t. different graphs. It is possible to prove that this
is always possible
The previous operator can be extended as a self-adjoint operator to
the full Hilbert space H.
It is SU(2) invariant and diff-covariant.
The eigenvalues of the area operator are given in general by finite sums
of the form

4πγ`2
P

∑
α∩S

[2j (u)(j (u) + 1) + 2j (d)(j (d) + 1)− j (u+d)(j (u+d)+1)]1/2

where the j (u), j (d), and j (u+d) are half integers that appear as eigen-
values of the angular momentum operator for the edges that appear
in the expression of the area operator (subject to some constraints in
the form of inequalities).
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Area operator

It is possible to obtain simple expressions for the area operator if we
restrict ourselves to the (internal) gauge invariant subspace of H
(this is spanned by the elements of Cyl with vanishing eigenvalues for
the vertex operators Ĵv

i ).
For example, if the intersections of α and S are just 2-degree vertices
the spectrum of the area operator takes now the simple form

8πγ`2
P

∑
I

(jI (jI + 1))1/2

Notice that the Immirzi parameter γ appears in all these expressions.
This means that it is not an irrelevant arbitrariness in the definition
of the canonical transformations leading to the Ashtekar formulation
but, rather, a parameter that may show up in (eventually) observable
magnitudes such as areas.

Area operators fail to commute on intersecting surfaces. This implies in
particular that it is impossible to diagonalize them simultaneously. This
lack of commutativity has no observable consequences at macroscopic
scales.
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Area operator

A final pictorial interpretation of this is the following. The “quantum
excitations of geometry” are 1-dimensional and carry a flux or area.
Any time a graph pierces a surface it endowes it with a quantum of
area. This picture is completely different from the Fock one (quantum
excitations as particles).
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Volume operator

The strategy to define it is similar to the one for the area operator.

The volume of a 3-dim region B (a certain open subset of Σ) is
classically given by

VB =

∫
B

√
h

This can be expressed in terms of the triad as

VB =

∫
B

∣∣∣∣ 1

3!
εabcε

ijk Ẽ a
i Ẽb

j Ẽ c
k

∣∣∣∣1/2

.

As before we want to rewrite this expression in terms of flux operators.
To this end we divide B in cells of a small coordinate volume. In
each cell we introduce three surfaces such that each of them splits
the cell in two disjoint pieces. This defines the so called “internal
regularization” (others are possible)
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Volume operator

An approximate expression for the volume in terms of flux operators
is then ∑

cells

∣∣∣∣(8πγ`2
P)3

6
εijkηabcE [Sa, τ i ]E [Sb, τ j ]E [Sc , τk ]

∣∣∣∣1/2

When the coordinate size of the cells goes to zero this gives the
volume of the region B.
As in the case of the area operator we define a family of operators
for each graph α (satisfying similar consistency conditions).

The resulting operator is given by

V̂B,α := α
∑
v

∣∣∣∣∣(8πγ`2
P)3

48

∑
e1,e2,e3

εijkε(e1, e2, e3)Ĵ
(v ,e1)
i Ĵ

(v ,e2)
j Ĵ

(v ,e3)
k

∣∣∣∣∣
1/2

where α is an undetermined constant and ε(e1, e2, e3) is the orienta-
tion factor of the family of edges (e1, e2, e3).
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Volume operator

Comments:

The removal of the regulator (i.e. of the auxiliary partition used to
define the volume operator) is non-trivial now because the volume
operator obtained by “just taking the limit” keeps some memory of
the details of the partition. Nevertheless there is a way to handle this
issue.

The orientation function is zero if the tangent vectors to the edges
e1, e2, e3 are linearly dependent at the point where they meet. This
means, in particular, that the volume operator is zero when acting on
state vectors defined on planar graphs i.e. graphs such that at each
vertex the tangent vectors are contained in a plane.

The volume operator is SU(2) gauge invariant and diffeomorphism
covariant as the area operator. The total volume operator (i.e. V̂Σ)
is diff-invariant.
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Volume operator

The volume operator is zero also when acting on gauge invariant
states if the vertices are at most of degree 3 (tri-valent vertices).

The eigenvalues of the volume operator are real and discrete. They
are not known in general but can be computed in many interesting
cases. In particular when the vertices ar four-valent.
The volume operator plays a central role in the implementation of
the quantum constraints because the quantum version of the scalar
constraint can be written in (relatively) simple terms by using Pois-
son brackets of the total volume operator and the basic canonical
variables.
Other regularizations are possible, for example the so called external
regularization obtained by considering the faces of the cells used in
the approximation of the volume operator in the process of writing it
in terms of the flux operators. The volume operators built by using
these different approaches have different properties.

J. Fernando Barbero G. (IEM-CSIC) Session 3 September 13, 2007 26 / 29



Epilogue

What is left to discuss?

Dynamics i.e. the implementation of the constraints in the quantum
theory to determine the Hilbert space of physical states Hphys includ-
ing its scalar product! (a highly non-trivial step not yet complete at
this point).

The geometric operators on the kinematical Hilbert space that I have
described do not commute with the constraints so they are not ob-
servables in the Dirac sense. Finding geometrical observables is non-
trivial. In fact, there are arguments suggesting that their properties
may be quite different from the ones discussed above [there is a lively
debate about such issues as the persistence of the discreteness of the
spectrum for area and volume operators.]
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Epilogue

Applications: Some of the most recent advances in the subject have
to do with the physical applications of the formalisms for those prob-
lems that do not require the solution of the difficult dynamical issues.
The most important ones are the study of black hole entropy and
Loop Quantum Cosmology (LQC). The results obtained here are very
suggestive and give tantalizing glimpses on the physics of the primi-
tive universe and singularities

Open problems: I would like to highlight two of them: the deter-
mination of the scalar product in the physical Hilbert space and the
issue of the semiclassical limit (how to recover gravitational large scale
Physics from the microscopic quantum theory.)
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Epilogue
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