Flat deformations of a semi-Riemannian metric admitting a symmetry group
 by
 Carot, J. Universitat Illes Balears
 and
 LlosA, J. Universitat de Barcelona

19th September 2007
|1| Flat deformation of a semi-Riemannian metric
[2] 1-parameter symmetry group
(3) Flat deformation theorem and symmetries
[4] The quotient metric
|5] The inverse problem
[6] The flat deformation law as a PDS
|7) The reduced PDS
|88 Geometrical meaning of the constraints
[9]

Flat deformation theorem (2005)
Given a semi-Riemannian analytic metric, γ, on a manifold \mathcal{M}, it exists a 2-form F and a scalar function c such that:

1. an arbitrary scalar constraint $\Psi(c, F, x)=0, x \in \mathcal{M}$ is fulfilled and
2. the deformed metric $\quad \eta:=c \gamma+\epsilon M$, is semi-Riemannian and flat

$$
\text { where } \quad|\epsilon|=1, \quad M(V, W)=\gamma\left(F_{V}, F_{W}\right), \quad F_{V}:=i_{V} F .
$$

We shall limit ourselves to the case of a 4-dimensional spacetime (\mathcal{M}, g).

Some algebraic remarks Given $F \in \Lambda^{2} \mathcal{M}$, it exists a null tetrad $\{\mu, \nu, \kappa, \lambda\}$ such that either:

Singular case: $\quad \underline{F=\kappa \wedge \mu}, \quad M=-\kappa \otimes \kappa$

$$
\gamma=\frac{1}{c} \eta-\frac{\epsilon}{c} \kappa \otimes \kappa
$$

with κ isotropic and η flat (conformal Kerr-Schild metric) or
Non-singular case:

$$
\begin{aligned}
\underline{F} & =-B \mu \wedge \nu+E \kappa \wedge \lambda \\
M & =-B^{2}(\mu \otimes \mu+\nu \otimes \nu)-E^{2}(\kappa \otimes \lambda+\lambda \otimes \kappa) \\
\eta & =\left(c-\epsilon B^{2}\right) \gamma-\epsilon\left(B^{2}+E^{2}\right)(\kappa \otimes \lambda+\lambda \otimes \kappa)
\end{aligned}
$$

$$
\eta=a \gamma+b H
$$

Prop. 1 Given a Lorentzian analytic metric γ, there exist two scalar functions, a and b, and a hyperbolic 2-plane H such that the metric

$$
\underline{\eta:=a \gamma+b H} \quad \text { is Lorentzian and flat. }
$$

$\eta:=a \gamma-b(\kappa \otimes \lambda+\lambda \otimes \kappa) \quad$ (Recalls a conformal Kerr-Schild transformation)

Let k and l be two vectors such that $\kappa=\gamma(k,-)$ and $\lambda=\gamma(l,-)$
The endomorphism $\quad \mathbb{H}=-k \otimes \lambda-l \otimes \kappa$ associated to H is a 2 -dimensional projector on a hyperbolic 2-plane $\mathcal{H}_{x} \subset T_{x} \mathcal{M}$

$$
\mathbb{H}^{2}=\mathbb{H} \quad \text { and } \quad \operatorname{trace} \mathbb{H}=2
$$

$K:=\gamma-H \quad$ (complementary 2-plane)

$$
\gamma=H+K \quad \text { and } \quad \eta=a K+(a+b) H
$$

The almost-product structure defined by H is compatible with both, γ and η.

Assume that γ admits a Killing vector $X, \quad \mathcal{L}_{X} \gamma=0$.
Does it exist a flat deformation law $\quad \eta:=a \gamma+b H$ such that $\quad \mathcal{L}_{X} \eta=0$? (i.e., such that X is also a Killing vector for η)

This is equivalent to $\mathcal{L}_{X} a=\mathcal{L}_{X} b=0, \quad \mathcal{L}_{X} H=0$
(\mathcal{M}, η) is a semi-Riemannian 4-manifold and G is a connected 1-parameter Lie group acting smoothly on \mathcal{M}

$$
\psi: G \times \mathcal{M} \longrightarrow \mathcal{M}, \quad(g, x) \longrightarrow g x .
$$

leaving η invariant:

$$
g^{*} \eta_{g x}=\eta_{x}
$$

$\mathcal{S}=\{G x, x \in \mathcal{M}\}$ is the class of all orbits and $\quad \pi: x \in \mathcal{M} \rightarrow G x \in \mathcal{S}$ is the canonical projection.

We assume that \mathcal{S} is a manifold, π is smooth and $\pi_{*}: T \mathcal{M} \rightarrow T \mathcal{S}$ jacobian map.
$\forall x \in \mathcal{M}, \quad \psi_{x}: G \rightarrow \mathcal{M} \quad$ is smooth and $\psi_{x *}: T G \rightarrow T \mathcal{M}$

$$
g \rightarrow g x \quad T_{e} G \rightarrow \mathcal{G}_{x} \subset T_{x} \mathcal{M}
$$

If X is an infinitesimal generator of the action of $G, \mathcal{G}=\operatorname{span}[X]$ and

$$
g_{*} X_{x}=X_{g x}, \quad \forall g \in G \quad \text { and } \quad x \in \mathcal{M}
$$

[2]
$\xi:=\eta(X, \quad) \in \Lambda^{1} \mathcal{M}$
$g^{*} \xi_{g x}=\xi_{x}, \forall g \in G$,
or, locally

Any $V \in T_{x} \mathcal{M}$ can be separated in two components that are, respectively, transverse to ξ and parallel to X :

$$
T \mathcal{M}=\xi^{\perp} \oplus \operatorname{span}[X], \quad V=V^{\perp}+\frac{\langle\xi, V\rangle}{l} X
$$

Killing equation

| $\mathcal{L}_{X} \eta=0$ | $\Leftrightarrow \quad \nabla \xi$ skewsymmetric $\quad \nabla \xi=\frac{1}{2} d \xi$ |
| :--- | :--- | :--- |
| $\mathcal{L}_{X} \xi=0$ | $\Rightarrow \quad i_{X}(d \xi)=-d\left(i_{X} \xi\right)=-d l$ |

$d \xi=d f \wedge \xi+\Theta \quad$ where $\quad f:=\log |l| \quad$ and $\quad i_{X} \Theta=0$

Def. 1: $\quad Y \in \mathcal{X}(\mathcal{M})$ is projectable if

$$
x, y \in \mathcal{M}, \quad \pi x=\pi y \Rightarrow \pi_{*} Y_{x}=\pi_{*} Y_{y}
$$

Prop. 2: $\quad Y \in \mathcal{X}(\mathcal{M})$ is projectable if, and only if, $\quad \pi_{*}\left(\mathcal{L}_{X} Y\right)=0$

For transverse vector fields
$\pi_{*}\left(\mathcal{L}_{X} Y\right)=0 \quad \Leftrightarrow \quad \mathcal{L}_{X} Y=0$

Class of projectable transverse vector fields
$\mathcal{X}_{\pi}(\mathcal{M})=\left\{Y \in \mathcal{X}(\mathcal{M}) \mid \mathcal{L}_{X} Y=0,\langle\xi, Y\rangle=0\right\}$

Prop. 3: Let $\vec{w} \in \mathcal{X}(\mathcal{S})$, then:
(a) it exists a unique vector field $W \in \mathcal{X}_{\pi}(\mathcal{M})$ such that $\pi_{*} W=\vec{w}$,
(b) $\pi_{*}: \mathcal{X}_{\pi}(\mathcal{M}): \longrightarrow \mathcal{X}(\mathcal{S})$ is bijective and we write $W=\pi_{*}^{-1} \vec{w}$.
$\pi^{*}: T_{\pi x}^{*} \mathcal{S} \longrightarrow T_{x}^{*} \mathcal{M}$ is the pull-back map $\quad\left\langle\pi^{*} \lambda, Z\right\rangle=\left\langle\lambda, \pi_{*} Z\right\rangle$.
$\pi^{*} \lambda$ is transverse: $\quad\left\langle\pi^{*} \lambda, X\right\rangle=0 \quad$ and $\quad \mathcal{L}_{X}\left(\pi^{*} \lambda\right)=0$
$\alpha \in T^{*} \mathcal{M}$ can be separated in two components, transverse to X and parallel to ξ

$$
\begin{gathered}
\alpha=\alpha^{\perp}+\frac{\langle\alpha, X\rangle}{l} \xi, \quad T^{*} \mathcal{M}=X^{\perp} \oplus \operatorname{span}[\xi] \\
\Lambda_{\pi}^{1} \mathcal{M}:=\left\{\alpha \in \Lambda^{1} \mathcal{M} \mid \mathcal{L}_{X} \alpha=0,\langle\alpha, X\rangle=0\right\} .
\end{gathered}
$$

Prop. 4: $\quad \pi^{*}\left(\Lambda^{1} \mathcal{S}\right)=\Lambda_{\pi}^{1} \mathcal{M}$ and $\pi^{*}: \Lambda^{1} \mathcal{S} \longrightarrow \Lambda_{\pi}^{1} \mathcal{M}$ is bijective.

Transverse G-preserved covariant tensors:

$$
\mathcal{T}_{n \pi} \mathcal{M}:=\left\{T \in \mathcal{T}_{n} \mathcal{M} \mid T(X,)=T(, X,)=\ldots=0, \mathcal{L}_{X} T=0\right\}
$$

$h:=\eta-\frac{1}{l} \xi \otimes \xi \quad$ is symmetric, transverse $\quad \operatorname{Rad} h=\operatorname{Ker} \pi_{*}=\operatorname{span}[X]$
and preserved by the group action, $\quad g^{*} h_{g x}=h_{x}$.
(Because the action of G preserves both η, ξ and l.)

It can be easily proved that it exists $\underline{h} \in \mathcal{T}_{2} \mathcal{S}$, non-degenerate, such that $\pi^{*} \underline{h}=h$

Riemannian connection for \underline{h}
Let $\vec{v}, \vec{w} \in \mathcal{X}(\mathcal{S})$ and $V=\pi_{*}^{-1} \vec{v}, W=\pi_{*}^{-1} \vec{w} \in \mathcal{X}_{\pi}(\mathcal{M})$.
Although $\nabla_{V} W \notin \mathcal{X}_{\pi}(\mathcal{M})$, we have that $\mathcal{L}_{X}\left(\nabla_{V} W\right)=0$ because,
$\mathcal{L}_{X} V=\mathcal{L}_{X} W=0$ and, as the G-action preserves η, then $\mathcal{L}_{X} \nabla=0$
Define:

$$
D_{\vec{v}} \vec{w}:=\pi_{*}\left(\nabla_{V} W\right)
$$

It is a connection on \mathcal{S}, which is symmetric and $D_{\vec{v}} \underline{h}=0$, hence Riemannian.

Some useful relations:

$$
\begin{gathered}
\nabla_{V} W=\pi_{*}^{-1}\left(D_{\vec{v}} \vec{w}\right)+\frac{1}{2 l} d \xi(V, W) X \\
\underline{h}\left(\vec{y}, \pi_{*} \nabla_{V} X\right)=\frac{1}{2} d \xi(V, Y), \quad\left\langle\xi, \nabla_{V} X\right\rangle=\operatorname{frac} 12\langle d l, V\rangle
\end{gathered}
$$

Riemannian-Christoffel tensors
$K(Y, Z ; V, W)=\eta\left(Y, \nabla_{V} \nabla_{W} Z-\nabla_{W} \nabla_{V} Z-\nabla_{[V, W]} Z\right)$
$\underline{K}(\vec{y}, \vec{z} ; \vec{v}, \vec{w})=\underline{h}\left(\vec{y}, D_{\vec{v}} D_{\vec{w}} \vec{z}-D_{\vec{w}} D_{\vec{v}} \vec{z}-D_{[\vec{v}, \vec{w}]} \vec{z}\right)$
(a) For transverse $Y, Z, V, W, \vec{y}=\pi_{*} Y$ and so on.

$$
\begin{aligned}
K(Y, Z ; V, W)= & \underline{K}(\vec{y}, \vec{z} ; \vec{v}, \vec{w})+\frac{1}{4 l}(\Theta(V, Z) \Theta(W, Y)- \\
& \Theta(V, Y) \Theta(W, Z)-2 \Theta(V, W) \Theta(Y, Z))
\end{aligned}
$$

(b) $K(X, Z ; V, W)=-\frac{1}{2} \nabla_{V} d \xi(W, Z)+\frac{1}{2} \nabla_{W} d \xi(V, Z)=\frac{1}{2} \nabla d \xi(Z, V, W)$
(c) $K(X, V ; X, W)=-\frac{1}{2} \nabla d l(W, V)+\frac{1}{4} l(V f)(W f)+\frac{1}{4} h\left(\Theta_{V}, \Theta_{W}\right)$
where $\Theta_{V}:=i_{V} \Theta$.
$\operatorname{Ric}(Z, W)=\underline{\operatorname{Ric}}(\vec{z}, \vec{w})-\frac{1}{2 l} h\left(\Theta_{Z}, \Theta_{W}\right)-\frac{1}{2} \nabla d f(Z, W)-\frac{1}{4}(Z f)(W f)$

Let G be a 1-parameter Lie group acting on \mathcal{M} and let the quotient $\mathcal{S}=\mathcal{M} / G$ be a manifold with a semi-Riemannian metric \underline{h}.

Is there a non-degenerate metric η on \mathcal{M} such that $\mathcal{L}_{X} \eta=0$ and having \underline{h} as the quotient metric?

It depends on the choice of $\xi \in \Lambda^{1} \mathcal{M}$ such that $\langle\xi, X\rangle \neq 0$, with constant sign on \mathcal{M}, and $\mathcal{L}_{X} \xi=0$. Then we take

$$
\eta=\pi^{*} \underline{h}+\frac{1}{\langle\xi, X\rangle} \xi \otimes \xi
$$

How to choose ξ ?
Since $\mathcal{L}_{X} \xi=0, \quad d \xi=d f \wedge \xi+\Theta$, with $f:=\log |\langle\xi, X\rangle|$ and $i_{X} \Theta=0$
$d^{2}=0 \quad \Rightarrow \quad \xi=e^{f}(d u+\beta)$

$$
f \in \pi^{*} \Lambda^{0} \mathcal{S}, \quad \beta \in \pi^{*} \Lambda^{1} \mathcal{S}, \quad u \in \Lambda^{0} \mathcal{M}, \quad|\langle d u, X\rangle|=1
$$

Equations above merely give the values of Riemann-Christoffel tensor K on \mathcal{M}.

However, if the output K is prescribed, then they become conditions on \underline{h} and ξ (alternatively, on \underline{h}, β and f).

These equations are solved in \mathcal{S}. Then the solutions are pulled-back to \mathcal{M}.
γ is G-invariant,

The flat deformation law as a PDS find $\eta=a \gamma+b H$, flat and G-invariant

Find a, b and H such that $K(\eta)=0$ on $\mathcal{U} \subset \mathcal{S}$ and then π^{*} pulls them back to $\pi^{-1} \mathcal{U} \subset \mathcal{M}$
X is a Killing vector for both γ and η :

$$
\begin{array}{llll}
\gamma=\pi^{*} p+\frac{1}{\bar{l}} \bar{\xi} \otimes \bar{\xi}, & \bar{\xi}:=i_{X} \gamma, & \bar{l}:=\langle\bar{\xi}, X\rangle=\gamma(X, X), & p \in \mathcal{T}_{2} \mathcal{S} \\
\eta=\pi^{*} \underline{h}+\frac{1}{l} \xi \otimes \xi, & \xi:=i_{X} \eta, & l:=\langle\xi, X\rangle, & \underline{h} \in \mathcal{T}_{2} \mathcal{S}
\end{array}
$$

$K_{\alpha \beta \mu \nu}=0$ are 20 independent equations for 6 unknowns. (Overdetermined.)

$$
K_{\alpha \beta \mu \nu} \equiv L_{\alpha \beta \mu \nu}+\frac{2}{l}\left(L_{\alpha \beta[\mu} \xi_{\nu]}+L_{\mu \nu[\alpha} \xi_{\beta]}\right)+\frac{4}{l^{2}} \xi_{[\beta} L_{\alpha][\mu} \xi_{\nu]}
$$

$e_{0}=X$ and e_{1}, e_{2}, e_{3} natural base for Gaussian normal coordinates $\left(x^{1}, x^{2}, x^{3}\right), x^{1}=0$ on Σ.

$$
\begin{aligned}
& L_{a b c d}:=\underline{K}_{a b c d}-\frac{1}{2 l}\left(\Theta_{a b} \Theta_{c d}+\Theta_{[a c} \Theta_{b] d}\right) \\
& L_{b c d}:=\frac{1}{2} D_{b} \Theta_{c d}+\frac{1}{2} \Theta_{b[d} f_{c]} \\
& L_{b d}:=-\frac{l}{2}\left(D_{b} f_{d}+\frac{1}{2} f_{b} f_{d}\right)-\frac{1}{4} \Theta_{b}^{a} \Theta_{a d} \\
& \quad L_{a b c d}=0, \quad L_{b c d}=0, \quad L_{b d}=0
\end{aligned}
$$

Reduced PDS: $\quad L_{11}=0, \quad L_{11 j}=0, \quad \rho_{i j}:=L_{i a j}^{a}-\frac{1}{2} L^{a c}{ }_{a c} h_{i j}=0$
Constraints (on Σ that extend to a neigbourhood by the 2 nd Bianchi identity):

$$
L_{a j}=0, \quad \rho_{i j}:=L_{1 a b}^{a}-\frac{1}{2} L_{a c}^{a c} h_{1 b}=0, \quad \epsilon^{c d a} L_{j c d}=0
$$

6 unknowns: a, b, H

$$
\gamma=\pi^{*} p+\frac{1}{\bar{l}} \bar{\xi} \otimes \bar{\xi}
$$

It exists a triad $\{\omega, \tau, \zeta\}$ such that $\quad p=-s \omega \otimes \omega+\tau \otimes \tau+\zeta \otimes \zeta$ and

$$
H=s(\beta \otimes \beta-\omega \otimes \omega), \quad \beta=\frac{m}{\bar{l}} \bar{\xi}-s^{\prime \prime} \sqrt{\frac{\bar{l}-s m^{2}}{|\bar{l}|}} \tau
$$

$m=+\sqrt{H(X, X)}, \quad s=\operatorname{sign} H(X, X)$ and $s^{\prime \prime}=\operatorname{sign} \bar{l}$.
New unknowns: $\quad a, b, m$ and the p-orthonormal triad $\{\omega, \tau, \zeta\}$

$$
\begin{array}{r}
\partial_{1}^{2} \omega \cong \Omega_{1} \tau+\Omega_{2} \zeta, \quad \partial_{1}^{2} \tau \cong s \Omega_{1} \omega+\Omega_{3} \zeta, \quad \partial_{1}^{2} \zeta \cong s \Omega_{2} \omega-\Omega_{3} \tau \\
n:=\frac{s s^{\prime \prime} b\left(\bar{l}-s m^{2}\right) a}{\bar{l} a+s b m^{2}}, \quad y:=s s^{\prime \prime} b m \sqrt{\frac{\bar{l}-s m^{2}}{|\bar{l}|}}
\end{array}
$$

$$
\begin{aligned}
L_{11}=0 & \longrightarrow \\
L_{11 i}= & l \partial_{1}^{2} f \cong 0 \\
\rho_{i j}= & y\left(\partial_{1}^{2} \tau_{i}-\tau_{i} \partial_{1}^{2} f+\tau_{i} \partial_{1}^{2} \log y\right) \cong 0 \\
\text { with } & -\frac{1}{2}\left(\bar{h}^{11} \delta_{i}^{k} \delta_{j}^{l}+\bar{h}^{1 k} \bar{h}^{1 l} \underline{h}_{i j}-\bar{h}^{11} \bar{h}^{k l} \underline{h}_{i j}\right) \partial_{1}^{2} \underline{h}_{k l} \cong 0 \\
& \partial_{1}^{2} \underline{h}_{i j} \cong \partial_{1}^{2}(a+b) \omega_{i} \omega_{j}+\partial_{1}^{2}(a+n) \tau_{i} \tau_{j}+\partial_{1}^{2} a \zeta_{i} \zeta_{j} \\
& \left.+2 s(n-b) \Omega_{1} \omega_{(i} \tau_{j)}-2 s b \Omega_{2} \omega_{(i} \zeta_{j)}+2 n \Omega_{3} \zeta_{(i} \tau_{j)}\right)
\end{aligned}
$$

To be solved for $\partial_{1}^{2} a, \partial_{1}^{2} b, \partial_{1}^{2} m$ and $\Omega_{c}, c=1,2,3$.

Characteristic determinant:

$$
\begin{array}{r}
\chi=\frac{4 s s^{\prime \prime}}{|\bar{l}|} b^{4} m \tau_{1} \zeta_{1}^{2}\left(-s^{\prime} \bar{l}+\bar{l} \zeta_{1}^{2}+s m^{2} \tau_{1}^{2}\right)\left(\bar{l} a+s b m^{2}\right) \\
\left(\left[\bar{l}-s m^{2}\right] \zeta_{1}^{2}+s^{\prime \prime} m^{2}\left[\tau_{1}^{2}+\zeta_{1}^{2}\right]\right)\left(\bar{h}^{11}\right)^{3}
\end{array}
$$

Let η be a solution of the reduced PDS .

$$
\begin{array}{lll}
K_{i j k l}=-2 \rho_{1}^{1} h_{j[l} h_{i k]} & K_{1 j k l}=2 h_{j[l} \rho_{1 k]}-2 \rho_{1}^{1} h_{j[l} h_{1 k]} & K_{0 i j k}=-2 \mu_{i}^{1} \epsilon_{1 j k} \\
K_{01 j k}=2 \mu_{l}^{l} \epsilon_{1 j k} & K_{0 j 1 k}=-\mu_{j}^{l} \epsilon_{l 1 k} & K_{0 a j k}=L_{a j}
\end{array}
$$

The fulfilling of the constraints is equivalent to (for $\alpha, \beta, \mu, \nu \neq 1$)

$$
K_{\alpha \beta \mu \nu}=0 \quad \text { and } \quad K_{1 \beta \mu \nu}=0
$$

$\mathcal{N}:=\pi^{-1} \Sigma$ is a hypersurface of $\mathcal{M} . \quad J: \mathcal{N} \rightarrow \mathcal{M}$
$\bar{\nu}=\pi^{*} d x^{1} \in \Lambda^{1} \mathcal{M}$ (recall Gaussian γ-normal coordinates) is orthogonal to \mathcal{N}.
(\mathcal{M}, η) and (\mathcal{M}, γ) are two Riemannian structures. Let n and \bar{n} be the respective unit vectors normal to \mathcal{N}, and ν and $\bar{\nu}$ the corresponding covectors, $\quad \bar{\nu} \propto \nu$
$K_{\alpha \beta \mu \nu}=0$ and $K_{1 \beta \mu \nu}=0$ whenever $\alpha, \beta, \mu, \nu \neq 1$ is equivalent to

$$
\underline{J^{*} K=0} \quad \text { and } \quad J^{*}\left(i_{n} K\right)=0
$$

$J^{*} K$ is connected to $K(\vartheta)$ and $\Phi \quad$ (Gauss) and $J^{*}\left(i_{n} K\right)$ is connected to $\nabla \Phi$ (Codazzi-Mainardi).
A particular solution is

$$
\Phi=0 \quad \text { and } \quad K^{(\vartheta)}=0
$$

\mathcal{N} has two couples of fundamental forms: $\quad\left(\vartheta=J^{*} \eta, \Phi\right) \quad$ and $\quad\left(\varphi=J^{*} \gamma, \phi\right)$

$$
\Phi(v, w)=\left\langle\nu, \nabla_{v} w\right\rangle \quad \text { and } \quad \phi(v, w)=\left\langle\bar{\nu}, \bar{\nabla}_{v} w\right\rangle, \quad v, w \in T \mathcal{N}
$$

If $\underline{\Phi=0}$, then $\quad \phi(v, w)=-\langle\bar{\nu}, B(v, w)\rangle, \quad B:=\nabla-\bar{\nabla}$
which results in a condition on the normal derivatives of the unknowns:

$$
\bar{\nabla}_{1} \eta_{\mu \nu}=\phi_{\mu \nu}+\bar{\nabla}_{(\mu} \eta_{\nu) 1}, \quad \mu, \nu \neq 1
$$

