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Motto
‘At a certain point in its history, the fundamental problems
of physics have to do with the way in which fundamental
concepts are defined. In those circumstances, the pursuit
of physics in accord with those concepts evidently has not
resolved the underlying problems. These are the times at
which philosophical analysis has become an unavoidable
task of physics itself.’

R. DiSalle, Understanding space-time: The philosophical development of physics from Newton

to Einstein. Cambridge University Press, 2006

Einstein’s road to general relativity:

• Principle of general covariance

• Equivalence principle

Bohr’s interpretation of quantum mechanics:

• Doctrine of classical concepts

• Principle of complementarity
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Fundamental problems of physics
• Logical vs probabilistic structure of quantum theory

• Three roads to quantum gravity (Smolin):

1. Start with quantum mechanics (string theory)

2. Start with general relativity (loop quantum gravity)

3. Discard quantum mechanics and general relativity

Recent trend in quantum theory and third road to quantum gravity:

topos theory

• Rethinks the logical foundations of physics (and mathematics!)

• Releases the tension between the noncommutativity of
quantum theory and the ‘commutativity’ of general relativity

Butterfield & Isham (1998–2000), Isham & Döring (2007)
Mulvey et al. (1974–2006), Heunen & Spitters (2007),
Markopoulou (2000), Corbett et al. (2007),. . .
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What is a topos?
‘A startling aspect of topos theory is that it unifies two
seemingly wholly distinct mathematical subjects: on the
one hand, topology and algebraic geometry [Grothendieck]
and on the other hand, logic and set theory [Lawvere].’

S. Mac Lane & I. Moerdijk, Sheaves in geometry and logic: A first introduction to topos
theory. Springer, 1994.

A topos is a generalization of the category Sets of sets, in
which “everything” you can do with sets can still be done,
e.g. define and compose functions, form subsets, cartesian
and fibered products, . . . except classical logic

• A category has objects X, Y and arrows X
f→ Y with associative

composition X
f→ Y

g→ Z = X
g◦f−→ Z and identity X

id→ X

• The objects of Sets are sets and the arrows are functions

• Maps between categories are called functors
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Definition of a topos
A topos is a category with:

1. Terminal object

2. Pullbacks

3. Exponentials

4. Subobject classifier

In Sets these things are as follows:

1. Singleton 1 = {∅}, with unique arrow X → 1 for any set X;
vice versa, this condition defines terminal objects in a category

2. The pullback of functions B
f→ A and C

g→ A is the fibered
product B ×A C = {(b, c) ∈ B × C | f(b) = g(c)} with the obvious
projections B ×A C → B and B ×A C → C; N.B. B × C = B ×1 C

3. Y X = {X f→ Y } is itself an object in Sets, with Y X ×X
ev→ Y

4. Ω = {0, 1} with logical structure as Ω ≡ {⊥,>} = {false, true}
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Pullback
Given f and g, there is an object B ×A C with arrows p, q such that
the square below commutes, and if P accomplishes same as B ×A C

there must be a unique arrow P → B ×A C

P

B ×A C
p

-

∃!

-

C
-

B

q

?

f
-

-

A

g

?
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Subobject classifier

Arrow X
f
↪→ Y defines subobject X ⊂ Y if f is “injective” (monic)

There exists an object Ω and an arrow 1
>→ Ω, such that for every

monic f there is a unique arrow χf defining a pullback

X - 1

Y

f

?

∩

χf
- Ω

>

?

In Sets: Ω = {0, 1} with >(1) = 1, and χf = χX (for X ⊂ Y )

Ω has logical structure (in Sets: Ω ≡ {⊥,>} = {false, true}):

true 1
>→ Ω, negation ¬ : Ω → Ω, conjunction ∧ : Ω× Ω → Ω,

false 1
⊥→ Ω, disjunction ∨ : Ω× Ω → Ω, implication ⇒: Ω× Ω → Ω
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Famous example
Topological space X defines lattice O(X) of open sets

Partial ordering turns O(X) into category, ∃!U → V iff U ⊇ V

Sheaf on X is functor F : O(X) → Sets that is determined locally

Example: F (U) = C(U), and if U ⊇ V , map C(U)
restriction−→ C(V )

The sheaves on X form a topos Sh(X), with subobject classifier

Ω : O(X) → Sets given by Ω(U) = O(U), with logical structure:

true = U , negation ¬V = int(U\V ), conjunction V ∧W = V ∩W ,

false = ∅, disjunction V ∨W = V ∪W , implication V ⇒ W = ¬V ∪W

Note that V ∨ ¬V = U\∂V 6= U = >: This logic is intuitionistic!!!
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Geometric (observational) logic
In general topoi one does not have:

• Aristotle’s principle of the excluded third

• Zermelo’s Axiom of Choice (any “surjection” has right inverse)

Further restrictions come from natural maps between topoi:

A geometric morphism F → E between topoi is a pair of
functors φ∗ : E → F and φ∗ : F → E such that φ∗ is left
adjoint to φ∗ and left exact (i.e. preserves limits)

E.g., map f : X → Y induces geometric morphism Sh(X) → Sh(Y )

A mathematical structure in a topos is preserved under
geometric morphisms if it is defined “geometrically”:

• Predicate logic involving arbitrary ∨, finitely many ∧, >, ⊥, ∃

• Axioms of the form ∀x : ϕ(x) → ψ(x)

C∗-algebras can be defined “geometrically” (Mulvey)
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The principle of general tovariance
Principle of general covariance: laws of physics must be covariant

under arbitrary coordinate transformations (Einstein)

Originally intended to express the general relativity of motion

It actually says that “general relativity” uses differential geometry

Principle of general tovariance: any mathematical structure
appearing in the laws of physics must be definable in an
arbitrary topos (with natural numbers object) and must be
preserved under geometric morphisms

General tovariance has no immediate physical content; it identifies
the mathematical language of physics as geometric logic

(“physics is information”? physics is logic!)

Since C∗-algebras satisfy general tovariance, we can state our
second principle: the equivalence principle
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The equivalence principle
• Einstein’s equivalence principle: free fall in a gravitational

field is locally indistinguishable from rest or uniform motion
in Minkowski space-time without gravitational forces

• Bohr’s equivalence principle (doctrine of classical concepts):
quantum theory is empirically accessible through classical physics

• New equivalence principle: any C∗-algebra of observables is
empirically equivalent to a commutative one

Observer locally avoids gravitational force by moving along a geodesic

(Einstein saw this as a special choice of coordinates)

Observer in quantum theory avoids noncommutativity by special
choice of topos in which C∗-algebra “becomes commutative”

What follows is just a first step in this direction (Heunen&Spitters)
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Abelianization of a C∗-algebra
1. Start from a C∗-algebra A, e.g. in topos Sets

2. Form set C(A) of all commutative C∗-subalgebras of A

3. Partially order C(A) by inclusion and see it as a category

4. Define topos T (A) = SetsC(A) of functors F : C(A) → Sets

5. Take “tautological functor” A(C) = C, A(C → D) = C ↪→ D

A is a commutative C∗-algebra in the topos T (A)

Interpretation (principle of complementarity):

A is what a (classical) observer can extract from A

Mutually exclusive “classical snapshots” C ⊂ A form picture of A

Note: cannot reconstruct A from A
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Gelfand theory in a topos (Mulvey)
A commutative C∗-algebra in Sets: A ∼= C(X,C), X ∼= P (A)

Arbitrary topos: locales instead of topological spaces

Locale: sup-complete distributive lattice s.t. x ∧ ∨λyλ = ∨λx ∧ yλ

Example: O(X) with U ≤ V if U ⊆ V is a locale (cf. topos Sh(X))

A commutative C∗-algebra in topos T : there is a locale Σ ≡ Σ(A)
in T s.t. A ∼= C(Σ,O(C)) (“internal complex numers C”)

Locale Σ is defined as “geometric theory” built from propositions
“a ∈ U” (a ∈ A, U ∈ O(C)) subject to axioms motivated by Sets:
Σ ∼= O(P (A)) and “a ∈ U” = {ϕ ∈ P (A) | ϕ(a) ∈ U}

Elements of spectrum Σ are (equivalence classes of) propositions,
of precisely the type you want in quantum mechanics!

Application to topos T (A) = SetsC(A) and C∗-algebra A(C) = C:

Functor Σ : C(A) → Sets is given by Σ(C) = O(P (C))
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States and propositions
Standard physics (in Sets) is based on pairing

〈ψ, P 〉 7→ [0, 1], ψ state, P proposition of type P = “a ∈ U” (U ⊂ R)

〈ψ, P 〉 gives probability that proposition P is true in state ψ

• Classical mechanics:

Observable is function a : M → R, pure state is point ψ ∈ M

Proposition P = “a ∈ U” is true if a(ψ) ∈ U and false if a(ψ) /∈ U

⇒ 〈ψ, P 〉 = 1 if ψ ∈ a−1(U) and 〈ψ, P 〉 = 0 if ψ /∈ a−1(U)

• Quantum mechanics:

Observable a is selfadjoint operator, pure state ψ is unit vector

Proposition P = “a ∈ U” is spectral projection Ea(U) of a on U

⇒ 〈ψ, P 〉 = ‖Ea(U)Ψ‖2 (Born rule)
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Truth
In classical physics propositions have a naive truth value

{0, 1} = {⊥,>} = {false, true} in any pure state

Recall that {⊥,>} = Ω is the subobject classifier in the topos Sets

Recall that in any topos Ω carries an intrinsic logical structure

• Goal: The pairing 〈ψ, P 〉 in quantum physics should not
a priori be probabilistic but should take values in the subobject
classifier Ω in an appropriate topos; then derive Born rule

• Slogan: Truth is prior to probability

Program:

1. Reformulate pairing in classical physics in topos terms

2. Adapt this to quantum physics
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Classical pairing as arrows
In Sets have phase space M and subobject classifier Ω = {0, 1}

• Pure state is arrow 1
ψ→M (i.e. point of M)

• Proposition P = “a ∈ U” is subobject a−1(U)
P
↪→M

with classifying arrow M
χP−→ Ω (χP ≡ χa−1(U))

• Pairing 〈ψ, P 〉 = χP ◦ ψ yields point 1
〈ψ,P 〉−→ Ω and indeed:

〈ψ, P 〉 = 1 = > if ψ ∈ a−1(U) and 〈ψ, P 〉 = 0 =⊥ if ψ /∈ a−1(U)

“Localic” reformulation: now replace space M by locale O(M)

• Pure state is subobject Ψ ≡ {U ∈ O(M) | δψ(U) = 1}
ψ
↪→ O(M)

with classifying arrow O(M)
χψ−→ Ω

• Proposition P = “a ∈ U” is open 1
a−1(U)
↪→ O(M) ≡ 1

P→ O(M)

• Pairing 〈ψ, P 〉 = χψ ◦ P yields same point 1
〈ψ,P 〉−→ Ω
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Quantum pairing as arrows

Now work in topos T (A) = SetsC(A) of functors F : C(A) → Sets

(C(A) is set of all commutative C∗-subalgebras of C∗-algebra A)

Commutative C∗-algebra A defined by A(C) = C has spectrum
Σ : C(A) → Sets, given by Σ(C) = O(P (C))

• Pure state is subobject Ψ
ψ
↪→ Σ with Ψ : C(A) → Sets given by

Ψ(C) = {U ∈ O(P (C)) | µCψ (U) = 1}

(µCψ is probability measure on P (C) induced by state ψ on A)

• Proposition P = “a ∈ U” should be open 1
a−1(U)
↪→ Σ ≡ 1

P→ Σ

• Pairing 〈ψ, P 〉 = χψ ◦ P should yield point 1
〈ψ,P 〉−→ Ω

Problem: observable a ∈ A does not naturally define element of A
(although state on A does define state on A). Various attempts. . .
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Summary
• Topos theory provides a new famework for all of physics

• It readdresses the logical structure of physical theories

• It implies intuitionistic logic (no middle third, no Choice)

• Principle of general tovariance even implies “geometric logic”

• It contains a new multi-valued notion of truth

• It carries the hope of deriving the probabilisitic structure of
quantum mechanics from its logical structure (von Neumann)

• It softens the noncommutativity of C∗-algebras,
which in a suitable topos “become commutative”

• Eases tension between quantum theory & general relativity?

• Guiding principles are needed (we have proposed a few)


