Optimal control problems for Affine connection control Systems: characterization of Extremals

María Barbero-Liñán, Miguel C. Muñoz-Lecanda

Departament de Matemàtica Aplicada IV Universitat Politècnica de Catalunya

Lisbon, 6 September 2007.

OUTLINE

- Optimal Control Problem for Affine Connection Control Systems
- PRESYMPLECTIC CONSTRAINT ALGORITHM FOR ACCS
- **3** Application: Time-Optimal Control Problem, F = 1

OUTLINE

• Optimal Control Problem for Affine Connection Control Systems

Presymplectic Constraint Algorithm for ACCS

3 Application: Time-Optimal Control Problem, F = 1

AFFINE CONNECTION CONTROL SYSTEM (ACCS)

Let Q be a smooth manifold, dim Q = n. Let ∇ be an affine connection on Q. Consider the control system

$$\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t)=u^{k}(t)Y_{k}(\gamma(t)),$$

where

- $\gamma \colon I \subset \mathbb{R} \to Q$ is a curve,
- $u: I \to U \subset \mathbb{R}^m$ are locally integrable *controls*,
- U is an open set,
- Y_k are *input vector fields* on Q.

An Affine Connection Control System is $\Sigma = (Q, \nabla, \mathscr{Y}, U)$,

where
$$\mathscr{Y} = \{Y_1, \ldots, Y_m\}.$$

The above second-order equation is rewritten on TQ,

$$\dot{\Upsilon}(t) = Z(\Upsilon(t)) + u^k(t)Y_k^V(\Upsilon(t)), \quad X = Z + u^kY_k^V,$$

where

- $\Upsilon: I \to TQ$ is a curve such that $\Upsilon = \dot{\gamma}$,
- Z is the geodesic spray associated to ∇, a vector field on TQ. In natural coordinates (x, v) for TQ,

$$Z = v^i \frac{\partial}{\partial x^i} - \Gamma^i_{jl}(x) v^j v^l \frac{\partial}{\partial v^i}, \quad \Gamma^i_{jl} \text{ Christoffel symbols for } \nabla \ .$$

• Y_k^V denotes the vertical lift of the vector field Y_k .

FREE-TIME OPTIMAL CONTROL PROBLEM FOR ACCS (OCP)

Let $F: TQ \times U \rightarrow \mathbb{R}$ be a *cost function*.

Given $\Sigma = (Q, \nabla, \mathscr{Y}, U)$, *F*.

Find $I = [a, b] \subset \mathbb{R}$ and $(\gamma, u) \colon I \to Q \times U$

such that there exists $\Upsilon\colon \textbf{\textit{I}}\to \textbf{\textit{T}}\textbf{\textit{Q}}$ along γ satisfying

(1)
$$\Upsilon(a) = v_{x_a}, \Upsilon(b) = v_{x_b}$$
, given $v_{x_a} \in T_{x_a}Q$, $v_{x_b} \in T_{x_b}Q$,

(2)
$$\dot{\Upsilon}(t) = (Z + u^k Y_k^V)(\Upsilon(t)) \quad (\Rightarrow \Upsilon = \dot{\gamma}),$$

(3) $S[\Upsilon, u] = \int_{I} F(\Upsilon(t), u(t)) dt$ is minimum over all curves on $TQ \times U$ satisfying (1) and (2).

PRESYMPLECTIC FORMALISM IN OCP

Let *M* be a smooth manifold and π_1 : $T^*M \times U \to T^*M$.

Let $(T^*M \times U, \Omega)$ be the *presymplectic manifold*, where

 Ω is the π_1 -pullback of the natural 2-form in T^*M .

In natural coordinates (x, p, u) for $T^*M \times U$,

$$\Omega = \mathrm{d} p_i \wedge \mathrm{d} x^i, \quad \ker \ \Omega = \left\{ \frac{\partial}{\partial u^k} \right\}_{k=1,\dots,m}$$

PRESYMPLECTIC FORMALISM IN OCP

Let X be a vector field along $\pi: M \times U \to M$, the cost function $F: M \times U \to \mathbb{R}$ and $p_0 \in \{-1, 0\}$,

we define the Hamiltonian $H: T^*M \times U \to \mathbb{R}$,

$$\begin{aligned} H(p,u) &= (H_X + p_0 F)(p,u) = \langle p, X(x,u) \rangle + p_0 F(x,u), \quad p \in T_x^* M. \end{aligned}$$

Then $(T^*M \times U, \Omega, H)$ is a presymplectic Hamiltonian system
and $i_{X_H}\Omega = \mathrm{d}H$ is the presymplectic equation.

Now

• M = TQ,

•
$$X = Z + u^k Y_k^V \in \mathfrak{X}(TQ)$$
,

- $H: T^*(TQ) \times U \rightarrow \mathbb{R}, \ H = H_Z + u^k H_{Y_k^V} + p_0 F$,
- $(T^*(TQ) \times U, \Omega, H)$ is the presymplectic

Hamiltonian system in OCP for ACCS.

WEAK PONTRYAGIN'S MAXIMUM PRINCIPLE (PMP)

THEOREM

Let (Υ, u) : $[a, b] \to TQ \times U$ be a solution of OCP with initial conditions v_{x_a} , v_{x_b} . Then there exist Λ : $[a, b] \to T^*(TQ)$ along Υ , and a constant $p_0 \in \{-1, 0\}$ such that:

- (Λ, u) is an integral curve of the Hamiltonian vector field X_{H} , $i_{X_{H}}\Omega = dH$;
- **2** $\Upsilon = \pi_{TQ} \circ \Lambda$, where π_{TQ} : $T^*(TQ) \rightarrow TQ$;
- **3** Υ satisfies the initial conditions in TQ;

(A)
$$\max_{\widetilde{u}\in U} H(\Lambda(t), \widetilde{u}) = 0$$
 for $t \in [a, b]$;
(B) $(p_0, \Lambda(t)) \neq 0$ for each $t \in [a, b]$.

DIFFERENT KINDS OF EXTREMALS

DEFINITION

A curve
$$(\Upsilon, u)$$
: $[a, b] \rightarrow TQ \times U$ for OCP is

- **1** an extremal if there exist $\Lambda : [a, b] \to T^*(TQ)$ and a constant $p_0 \in \{-1, 0\}$ such that $\Upsilon = \pi_{TQ} \circ \Lambda$ and (Λ, u) satisfies the necessary conditions of PMP;
- 2) a normal extremal if it is an extremal and $p_0 = -1$;
- **3** an abnormal extremal if it is an extremal and $p_0 = 0$;
- a strictly abnormal extremal if it is not a normal extremal, but it is an abnormal extremal.

The curve (Λ, u) : $[a, b] \to T^*(TQ) \times U$ along Υ is called biextremal for *OCP*.

OUTLINE

Optimal Control Problem for Affine Connection Control Systems

PRESYMPLECTIC CONSTRAINT ALGORITHM FOR ACCS

3 Application: Time-Optimal Control Problem, F = 1

PRESYMPLECTIC CONSTRAINT ALGORITHM (GOTAY-NESTER)

Given (M, Ω, H) and $i_X \Omega = dH$, find (N, X) such that

- (A) N is a submanifold of M,
- (B) X is a vector field tangent to N,
- (C) N is maximal among all the submanifolds satisfying A, B.

 $\begin{array}{lll} \begin{array}{lll} \textit{Primary} & \textit{N}_{0} &= \{x \in M \mid \exists v_{x} \in T_{x}M, \ i_{v_{x}}\Omega = \mathrm{d}_{x}H\} \\ \textit{constraint} &= \{x \in M \mid Z(H)(x) = 0, \ \forall Z \in \ker \Omega\} \\ \textit{submanifold} & \textit{X}^{N_{0}} &= \textit{X}^{0} + \ker \Omega, \ \textit{X}^{0} \ \text{is a solution of} \ i_{x}\Omega = \mathrm{d}H \\ \hline & \text{Stabilization:} & \textit{N}_{1} = \{x \in N_{0} \mid \exists X \in X^{N_{0}}, \ X(x) \in T_{x}N_{0}\}. \\ & (\textit{N}_{i}, X^{N_{i}}), \quad \textit{N}_{i+1} = \{x \in N_{i} \mid \exists X \in X^{N_{i}}, \ X(x) \in T_{x}N_{i}\}. \\ \hline & \text{If} \ \exists i \in \mathbb{N} \ \text{such that} \ \textit{N}_{i} = \textit{N}_{i-1}, \\ & \textit{N}_{f} = \textit{N}_{i-1} \ \text{is the final constraint submanifold}. \end{array}$

Time-Optimal

NOW IN OCP FOR ACCS

- $M = T^*(TQ) \times U$,
- $H: T^*(TQ) \times U \rightarrow \mathbb{R}, H = H_Z + u^k H_{Y_k^V} + p_0 F$,
- $(T^*(TQ) \times U, \Omega, H)$ is the presymplectic

Hamiltonian system in OCP for ACCS,

• $i_{X_H}\Omega = dH$ and locally

$$X_{H} = \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial x^{i}} - \frac{\partial H}{\partial x^{i}} \frac{\partial}{\partial p_{i}} + C^{k} \frac{\partial}{\partial u^{k}}.$$

CONSTRAINT ALGORITHM IN OCP FOR ACCS (FREE-TIME)

Primary submanifold

$$N_0 = \left\{ (\Lambda, u) \in T^*(TQ) \times U \middle| \begin{array}{c} \underbrace{\frac{\partial H}{\partial u^k} =}_{H_{Y_k^V} + p_0} \underbrace{\partial F}_{\partial u^k} = 0, \ k = 1, \dots, m \\ H = 0. \end{array} \right.$$

First stabilization step: $N_1 = \{(\Lambda, u) \in N_0 \mid X_H(\Lambda, u) \in T_{(\Lambda, u)}N_0\}.$

Tangency conditions:

$$X_{H}(H_{Y_{k}^{V}}+p_{0}\frac{\partial F}{\partial u^{k}})=0,$$
$$X_{H}(H)=0 \quad \text{Trivially.}$$

Normality	Abnormality
$p_0=-1$	$p_0 = 0$
$\{H_{Y_k^V} = \frac{\partial F}{\partial u^k}, H = 0\} (= N_0^{[-1]})$	$\{H_{Y_k^V}=0, H=0\}(=N_0^{[0]})$
$N_1^{[-1]}$	$N_0^{[0]} \cap \{H_{[Z,Y_k^V]} = 0\} (= N_1^{[0]})$
:	:
$(N_{f}^{[-1]}, X_{f}^{[-1]})$	$(N_{f}^{[0]}, X_{f}^{[0]})$ Delete zero covector

STRICT ABNORMALITY

Let
$$\rho: T^*(TQ) \times U \to TQ \times U$$
 and $\mathbf{P} = \rho(N_f^{[0]}) \cap \rho(N_f^{[-1]})$.

	$\rho(N_f^{[0]}) \neq \emptyset$	all the abnormal extremals
$\mathbf{P}=\emptyset$		are strict.
	$\rho(N_f^{[-1]}) \neq \emptyset$	all the normal extremals
		are strict normal.
	$\mathbf{P}= ho(N_{f}^{[0]})$	no strict abnormal extremals.
$\mathbf{P}\neq \emptyset$	$\mathbf{P} eq ho(N_f^{[0]})$	local strict abnormal extremals.
	$\mathbf{P}= ho(N_{f}^{[0]})$	all the abnormal extremals
	$= \rho(N_f^{[-1]})$	are also normal and viceversa.

OUTLINE

Optimal Control Problem for Affine Connection Control Systems

Presymplectic Constraint Algorithm for ACCS

3 Application: Time-Optimal Control Problem, F = 1

Constraint Algorithm for Time-Optimal Problem, F = 1

Pontryagin's Hamiltonian $H = H_Z + u^k H_{Y_k^V} + p_0$.

On the submanifold H = 0, we obtain $N_f^{[-1]}$ and $N_f^{[0]}$.

PUT CONDITION H = 0 ASIDE and apply the algorithm:

$$N_0 = N_0^{[0]} = N_0^{[-1]} = \{ (\Lambda, u) \in T^*(TQ) \times U \mid H_{Y_k^V} = 0 \}, N_1 = \{ (\Lambda, u) \in N_0 \mid H_{[Z, Y_k^V]} = 0 \},$$

for k = 1, ..., m, and so on until N_f , if it exists.

The actual final constraint submanifolds are

$$N_f^{[0]} = N_f \cap \{ (\Lambda, u) \in T^*(TQ) \times U \, | \, H_Z + u^k H_{Y_k^V} = 0 \},$$

$$N_f^{[-1]} = N_f \cap \{(\Lambda, u) \in T^*(TQ) \times U \mid H_Z + u^k H_{Y_k^V} = 1\}.$$

Results for Time-Optimal Control Problem, F = 1

PROPOSITION

Let Σ be an ACCS. Given a time-optimal control problem:

If N_f^[0] only has zero covectors, there are no abnormal extremals.

② If
$$N_f^{[0]}$$
 has nonzero covectors and
 $N_f \subset \{(\Lambda, u) \in T^*(TQ) \times U \mid (H_Z + u^j H_{Y_j^V}) = 0\}$, then
every abnormal extremal is strict and there are no normal
extremals.

References

- F. BULLO, A. D. LEWIS, Geometric Control of Mechanical Systems. Modeling, analysis and design for simple mechanical control, Texts in Applied Mathematics 49, Springer-Verlag, New York-Heidelberg-Berlin 2004.
- J. F. CARIÑENA, Theory of singular Lagrangians, Fortschr. Phys., **38**(9)(1990), 641-679.
- M. J. GOTAY, J. M. NESTER, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence theorem, Ann. Inst. H. Poincare Sect. A 30(2)(1979), 129-142.

References

- W. LIU, H. J. SUSSMANN, Shortest paths for sub-Riemannian metrics on rank-two distributions, *Mem. Amer. Math. Soc.* 564, Jan. 1996.
- R. MONTGOMERY, Abnormal Minimizers, SIAM J. Control Optim., 32(6)(1994), 1605-1620.
- L. S. PONTRYAGIN, V. G. BOLTYANSKI, R. V. GAMKRELIDZE AND E. F. MISCHENKO, *The Mathematical Theory of Optimal Processes*, Interscience Publishers, Inc., New York 1962.