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Departament de Matemàtica Aplicada IV
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Affine Connection Control System (ACCS)

Let Q be a smooth manifold, dim Q = n.
Let ∇ be an affine connection on Q.
Consider the control system

∇γ̇(t)γ̇(t) = uk(t)Yk(γ(t)),

where

• γ : I ⊂ R → Q is a curve,

• u : I → U ⊂ Rm are locally integrable controls,

• U is an open set,

• Yk are input vector fields on Q.

An Affine Connection Control System is Σ = (Q,∇, Y , U),

where Y = {Y1, . . . , Ym}.
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The above second-order equation is rewritten on TQ,

Υ̇(t) = Z (Υ(t)) + uk(t)Y V
k (Υ(t)), X = Z + ukY V

k ,

where

• Υ: I → TQ is a curve such that Υ = γ̇,

• Z is the geodesic spray associated to ∇, a vector field on
TQ. In natural coordinates (x , v) for TQ,

Z = v i ∂

∂x i
−Γi

jl(x)v jv l ∂

∂v i
, Γi

jl Christoffel symbols for ∇ .

• Y V
k denotes the vertical lift of the vector field Yk .
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Free-time Optimal Control Problem for ACCS (OCP)

Let F : TQ × U → R be a cost function.

Given Σ = (Q,∇, Y , U), F .

Find I = [a, b] ⊂ R and (γ, u) : I → Q × U

such that there exists Υ: I → TQ along γ satisfying

(1) Υ(a) = vxa , Υ(b) = vxb
, given vxa ∈ TxaQ, vxb

∈ Txb
Q,

(2) Υ̇(t) = (Z + ukY V
k )(Υ(t)) (⇒ Υ = γ̇),

(3) S[Υ, u] =
∫

I
F (Υ(t), u(t))dt is minimum over all curves

on TQ × U satisfying (1) and (2).
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Presymplectic formalism in OCP

Let M be a smooth manifold and π1 : T ∗M × U → T ∗M .

Let (T ∗M × U , Ω) be the presymplectic manifold, where

Ω is the π1-pullback of the natural 2-form in T ∗M .

In natural coordinates (x , p, u) for T ∗M × U ,

Ω = dpi ∧ dx i , ker Ω =

{
∂

∂uk

}
k=1,...,m

.
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Presymplectic formalism in OCP

Let X be a vector field along π : M × U → M ,
the cost function F : M × U → R and p0 ∈ {−1, 0},

we define the Hamiltonian H : T ∗M × U → R,

H(p, u) = (HX+p0F )(p, u) = 〈p, X (x , u)〉+p0F (x , u), p ∈ T ∗
x M .

Then (T ∗M × U , Ω, H) is a presymplectic Hamiltonian system

and iXH
Ω = dH is the presymplectic equation.
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Now

• M = TQ,

• X = Z + ukY V
k ∈ X(TQ),

• H : T ∗(TQ)× U → R, H = HZ + ukHY V
k

+ p0F ,

• (T ∗(TQ)× U , Ω, H) is the presymplectic

Hamiltonian system in OCP for ACCS.

T ∗(TQ)

πTQ
��

T ∗(TQ)× U

��
TQ

τQ
��

TQ × U

��
I

Λ

??~~~~~~~~~~~~~~~~~~~~ γ̇ = Υ

77nnnnnnnnnnnnnnn
γ

// Q Q × U
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Weak Pontryagin’s Maximum Principle (PMP)

Theorem

Let (Υ, u) : [a, b] → TQ × U be a solution of OCP with initial

conditions vxa , vxb
. Then there exist Λ: [a, b] → T ∗(TQ)

along Υ, and a constant p0 ∈ {−1, 0} such that:

1 (Λ, u) is an integral curve of the Hamiltonian vector field

XH , iXH
Ω = dH;

2 Υ = πTQ ◦ Λ, where πTQ : T ∗(TQ) → TQ;

3 Υ satisfies the initial conditions in TQ;

4 (a) maxeu∈U H(Λ(t), ũ) = 0 for t ∈ [a, b];

(b) (p0, Λ(t)) 6= 0 for each t ∈ [a, b].
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Different kinds of extremals

Definition

A curve (Υ, u) : [a, b] → TQ × U for OCP is

1 an extremal if there exist Λ: [a, b] → T ∗(TQ) and a

constant p0 ∈ {−1, 0} such that Υ = πTQ ◦ Λ and (Λ, u)

satisfies the necessary conditions of PMP;

2 a normal extremal if it is an extremal and p0 = −1;

3 an abnormal extremal if it is an extremal and p0 = 0;

4 a strictly abnormal extremal if it is not a normal extremal,

but it is an abnormal extremal.

The curve (Λ, u) : [a, b] → T ∗(TQ)× U along Υ is called

biextremal for OCP .
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Presymplectic Constraint Algorithm (Gotay-Nester)

Given (M , Ω, H) and iXΩ = dH , find (N , X ) such that

(a) N is a submanifold of M ,

(b) X is a vector field tangent to N ,

(c) N is maximal among all the submanifolds satisfying A, B .

Primary N0 = {x ∈ M | ∃ vx ∈ TxM , ivx Ω = dxH}
constraint = {x ∈ M |Z (H)(x) = 0 , ∀Z ∈ ker Ω}

submanifold XN0 = X 0 + ker Ω, X 0 is a solution of iXΩ = dH

Stabilization: N1 = {x ∈ N0 | ∃X ∈ XN0 , X (x) ∈ TxN0}.
(Ni , X

Ni ), Ni+1 = {x ∈ Ni | ∃X ∈ XNi , X (x) ∈ TxNi}.
If ∃ i ∈ N such that Ni = Ni−1,

Nf = Ni−1 is the final constraint submanifold.
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Now in OCP for ACCS

• M = T ∗(TQ)× U ,

• H : T ∗(TQ)× U → R, H = HZ + ukHY V
k

+ p0F ,

• (T ∗(TQ)× U , Ω, H) is the presymplectic

Hamiltonian system in OCP for ACCS,

• iXH
Ω = dH and locally

XH =
∂H

∂pi

∂

∂x i
− ∂H

∂x i

∂

∂pi
+ C k ∂

∂uk
.
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Constraint Algorithm in OCP for ACCS (free-time)

Primary submanifold

N0 =

(Λ, u) ∈ T ∗(TQ)× U

∣∣∣∣∣∣∣∣
∂H

∂uk =︷ ︸︸ ︷
HY V

k
+ p0

∂F

∂uk
= 0, k = 1, . . . , m

H = 0.


First stabilization step:
N1 = {(Λ, u) ∈ N0 |XH(Λ, u) ∈ T(Λ,u)N0}.

Tangency conditions:

XH(HY V
k

+ p0
∂F

∂uk
) = 0,

XH(H) = 0 Trivially.
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Normality Abnormality

p0 = −1 p0 = 0

{HY V
k

= ∂F
∂uk , H = 0}(= N

[−1]
0 ) {HY V

k
= 0, H = 0}(= N

[0]
0 )

N
[−1]
1 N

[0]
0 ∩ {H[Z ,Y V

k ] = 0}(= N
[0]
1 )

...
...

(N
[−1]
f , X

[−1]
f ) (N

[0]
f , X

[0]
f )

Delete zero covector
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Strict abnormality

Let ρ : T ∗(TQ)× U → TQ × U and P =ρ(N
[0]
f ) ∩ ρ(N

[−1]
f ).

ρ(N
[0]
f ) 6= ∅ all the abnormal extremals

P = ∅ are strict.

ρ(N
[−1]
f ) 6= ∅ all the normal extremals

are strict normal.

P = ρ(N
[0]
f ) no strict abnormal extremals.

P 6= ∅ P 6= ρ(N
[0]
f ) local strict abnormal extremals.

P = ρ(N
[0]
f ) all the abnormal extremals

= ρ(N
[−1]
f ) are also normal and viceversa.
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Constraint Algorithm for Time-Optimal Problem, F = 1

Pontryagin’s Hamiltonian H = HZ + ukHY V
k

+ p0.

On the submanifold H = 0, we obtain N
[−1]
f and N

[0]
f .

Put condition H = 0 aside and apply the algorithm:

N0 = N
[0]
0 = N

[−1]
0 = {(Λ, u) ∈ T ∗(TQ)× U |HY V

k
= 0},

N1 = {(Λ, u) ∈ N0 |H[Z ,Y V
k ] = 0},

for k = 1, . . . , m, and so on until Nf , if it exists.

The actual final constraint submanifolds are

N
[0]
f = Nf ∩ {(Λ, u) ∈ T ∗(TQ)× U |HZ + ukHY V

k
= 0},

N
[−1]
f = Nf ∩ {(Λ, u) ∈ T ∗(TQ)× U |HZ + ukHY V

k
= 1}.
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Results for Time-Optimal Control Problem, F = 1

Proposition

Let Σ be an ACCS. Given a time-optimal control problem:

1 If N
[0]
f only has zero covectors, there are no abnormal

extremals.

2 If N
[0]
f has nonzero covectors and

Nf ⊂ {(Λ, u) ∈ T ∗(TQ)× U | (HZ + ujHY V
j
) = 0}, then

every abnormal extremal is strict and there are no normal

extremals.
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