Optimal control problems for AFFINE CONNECTION CONTROL SYSTEMS: CHARACTERIZATION OF EXTREMALS

María Barbero-Liñán, Miguel C. Muñoz-Lecanda

Departament de Matemàtica Aplicada IV
Universitat Politècnica de Catalunya
D M A 4

Lisbon, 6 September 2007.

Outline

© Optimal Control Problem for Affine Connection Control Systems
(2 Presymplectic Constraint Algorithm FOR ACCS
© Application: Time-Optimal Control Problem, $F=1$

Outline

© Optimal Control Problem for Affine Connection Control Systems
(2) Presymplectic Constraint Algorithm for ACCS
(3) Application: Time-Optimal Control Problem, $F=1$

Affine Connection Control System (ACCS)

Let Q be a smooth manifold, $\operatorname{dim} Q=n$.
Let ∇ be an affine connection on Q.
Consider the control system

$$
\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=u^{k}(t) Y_{k}(\gamma(t)),
$$

where

- $\gamma: I \subset \mathbb{R} \rightarrow Q$ is a curve,
- $u: I \rightarrow U \subset \mathbb{R}^{m}$ are locally integrable controls,
- U is an open set,
- Y_{k} are input vector fields on Q.

An Affine Connection Control System is $\Sigma=(Q, \nabla, \mathscr{Y}, U)$, where $\mathscr{Y}=\left\{Y_{1}, \ldots, Y_{m}\right\}$.

The above second-order equation is rewritten on $T Q$,

$$
\dot{\Upsilon}(t)=Z(\Upsilon(t))+u^{k}(t) Y_{k}^{V}(\Upsilon(t)), \quad X=Z+u^{k} Y_{k}^{V}
$$

where

- $\Upsilon: I \rightarrow T Q$ is a curve such that $\Upsilon=\dot{\gamma}$,
- Z is the geodesic spray associated to ∇, a vector field on $T Q$. In natural coordinates (x, v) for $T Q$,
$Z=v^{i} \frac{\partial}{\partial x^{i}}-\Gamma_{j l}^{i}(x) v^{j} v^{\prime} \frac{\partial}{\partial v^{i}}, \quad \Gamma_{j l}^{i}$ Christoffel symbols for ∇.
- Y_{k}^{V} denotes the vertical lift of the vector field Y_{k}.

Free-time Optimal Control Problem for ACCS (OCP)

Let $F: T Q \times U \rightarrow \mathbb{R}$ be a cost function.
Given $\Sigma=(Q, \nabla, \mathscr{Y}, U), F$.
Find $I=[a, b] \subset \mathbb{R}$ and $(\gamma, u): I \rightarrow Q \times U$
such that there exists $\Upsilon: I \rightarrow T Q$ along γ satisfying
(1) $\Upsilon(a)=v_{x_{a}}, \Upsilon(b)=v_{x_{b}}$, given $v_{x_{a}} \in T_{x_{a}} Q, v_{x_{b}} \in T_{x_{b}} Q$,
(2) $\dot{\Upsilon}(t)=\left(Z+u^{k} Y_{k}^{V}\right)(\Upsilon(t)) \quad(\Rightarrow \Upsilon=\dot{\gamma})$,
(3) $\mathcal{S}[\Upsilon, u]=\int_{I} F(\Upsilon(t), u(t)) d t$ is minimum over all curves on $T Q \times U$ satisfying (1) and (2).

Presymplectic formalism in OCP

Let M be a smooth manifold and $\pi_{1}: T^{*} M \times U \rightarrow T^{*} M$.
Let ($T^{*} M \times U, \Omega$) be the presymplectic manifold, where
Ω is the π_{1}-pullback of the natural 2 -form in $T^{*} M$.
In natural coordinates (x, p, u) for $T^{*} M \times U$,

$$
\Omega=\mathrm{d} p_{i} \wedge \mathrm{~d} x^{i}, \quad \text { ker } \Omega=\left\{\frac{\partial}{\partial u^{k}}\right\}_{k=1, \ldots, m} .
$$

Presymplectic formalism in OCP

Let X be a vector field along $\pi: M \times U \rightarrow M$, the cost function $F: M \times U \rightarrow \mathbb{R}$ and $p_{0} \in\{-1,0\}$, we define the Hamiltonian $H: T^{*} M \times U \rightarrow \mathbb{R}$,
$H(p, u)=\left(H_{X}+p_{0} F\right)(p, u)=\langle p, X(x, u)\rangle+p_{0} F(x, u), \quad p \in T_{x}^{*} M$.
Then ($T^{*} M \times U, \Omega, H$) is a presymplectic Hamiltonian system and $\quad i_{X_{H}} \Omega=\mathrm{d} H \quad$ is the presymplectic equation.

Now

- $M=T Q$,
- $X=Z+u^{k} Y_{k}^{V} \in \mathfrak{X}(T Q)$,
- $H: T^{*}(T Q) \times U \rightarrow \mathbb{R}, H=H_{Z}+u^{k} H_{Y_{k}^{v}}+p_{0} F$,
- $\left(T^{*}(T Q) \times U, \Omega, H\right)$ is the presymplectic Hamiltonian system in OCP for ACCS.

Weak Pontryagin's Maximum Principle (PMP)

Theorem

Let $(\Upsilon, u):[a, b] \rightarrow T Q \times U$ be a solution of OCP with initial conditions $v_{x_{a}}, v_{x_{b}}$. Then there exist $\Lambda:[a, b] \rightarrow T^{*}(T Q)$ along Υ, and a constant $p_{0} \in\{-1,0\}$ such that:
(1) (Λ, u) is an integral curve of the Hamiltonian vector field $X_{H}, \quad i_{X_{H}} \Omega=\mathrm{d} H$;
(2) $\Upsilon=\pi_{T Q} \circ \Lambda$, where $\pi_{T Q}: T^{*}(T Q) \rightarrow T Q$;
(3) Υ satisfies the initial conditions in $T Q$;
(4) (A) $\max _{\widetilde{u} \in U} H(\Lambda(t), \widetilde{u})=0$ for $t \in[a, b]$;
(B) $\left(p_{0}, \Lambda(t)\right) \neq 0$ for each $t \in[a, b]$.

Different kinds of extremals

DEFINITION

A curve $(\Upsilon, u):[a, b] \rightarrow T Q \times U$ for OCP is
(1) an extremal if there exist $\Lambda:[a, b] \rightarrow T^{*}(T Q)$ and a constant $p_{0} \in\{-1,0\}$ such that $\Upsilon=\pi_{T Q} \circ \Lambda$ and (Λ, u) satisfies the necessary conditions of PMP;
(2) a normal extremal if it is an extremal and $p_{0}=-1$;
(3) an abnormal extremal if it is an extremal and $p_{0}=0$;
(4) a strictly abnormal extremal if it is not a normal extremal, but it is an abnormal extremal.
The curve $(\Lambda, u):[a, b] \rightarrow T^{*}(T Q) \times U$ along Υ is called biextremal for OCP.

Outline

(1) Optimal Control Problem for Affine Connection Control Systems
(2) Presymplectic Constraint Algorithm FOR ACCS
(3) Application: Time-Optimal Control Problem, $F=1$

Presymplectic Constraint Algorithm (Gotay-Nester)

Given (M, Ω, H) and $i_{X} \Omega=\mathrm{d} H$, find (N, X) such that
(A) N is a submanifold of M,
(B) X is a vector field tangent to N,
(C) N is maximal among all the submanifolds satisfying A, B.

Primary $\quad N_{0}=\left\{x \in M \mid \exists v_{x} \in T_{x} M, i_{v_{x}} \Omega=d_{x} H\right\}$
constraint $\quad=\{x \in M \mid Z(H)(x)=0, \forall Z \in$ ker $\Omega\}$
submanifold $X^{N_{0}}=X^{0}+\operatorname{ker} \Omega, X^{0}$ is a solution of $i_{X} \Omega=\mathrm{d} H$
Stabilization: $N_{1}=\left\{x \in N_{0} \mid \exists X \in X^{N_{0}}, X(x) \in T_{x} N_{0}\right\}$.
$\left(N_{i}, X^{N_{i}}\right), \quad N_{i+1}=\left\{x \in N_{i} \mid \exists X \in X^{N_{i}}, X(x) \in T_{x} N_{i}\right\}$.
If $\exists i \in \mathbb{N}$ such that $N_{i}=N_{i-1}$,
$N_{f}=N_{i-1}$ is the final constraint submanifold.

Now in OCP for ACCS

- $M=T^{*}(T Q) \times U$,
- $H: T^{*}(T Q) \times U \rightarrow \mathbb{R}, H=H_{Z}+u^{k} H_{Y_{k}^{v}}+p_{0} F$,
- $\left(T^{*}(T Q) \times U, \Omega, H\right)$ is the presymplectic Hamiltonian system in OCP for ACCS,
- $i_{X_{H}} \Omega=d H$ and locally

$$
X_{H}=\frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial x^{i}}-\frac{\partial H}{\partial x^{i}} \frac{\partial}{\partial p_{i}}+C^{k} \frac{\partial}{\partial u^{k}} .
$$

Constraint Algorithm in OCP for ACCS (free-time)

Primary submanifold

$N_{0}=\left\{\begin{array}{l|l}(\Lambda, u) \in T^{*}(T Q) \times U & \overbrace{\begin{array}{l}H_{Y_{k}^{v}}+p_{0} \frac{\partial F}{\partial u^{k}} \\ H=0 .\end{array}}^{\frac{\partial H}{\partial u^{k}}=}=0, k=1, \ldots, m\end{array}\right.$
First stabilization step:
$N_{1}=\left\{(\Lambda, u) \in N_{0} \mid X_{H}(\Lambda, u) \in T_{(\Lambda, u)} N_{0}\right\}$.
Tangency conditions:

$$
\begin{aligned}
& X_{H}\left(H_{Y_{k}^{v}}+p_{0} \frac{\partial F}{\partial u^{k}}\right)=0, \\
& X_{H}(H)=0 \quad \text { Trivially. }
\end{aligned}
$$

Normality	Abnormality
$p_{0}=-1$	$p_{0}=0$
$\left\{H_{Y_{k}^{\vee}}=\frac{\partial F}{\partial u^{k}}, H=0\right\}\left(=N_{0}^{[-1]}\right)$	$\left\{H_{Y_{k}^{\vee}}=0, H=0\right\}\left(=N_{0}^{[0]}\right)$
$N_{1}^{[-1]}$	$N_{0}^{[0]} \cap\left\{H_{\left[Z, Y_{k}^{\vee}\right]}=0\right\}\left(=N_{1}^{[0]}\right)$
\vdots	\vdots
$\left(N_{f}^{[-1]}, X_{f}^{[-1]}\right)$	$\left(N_{f}^{[0]}, X_{f}^{[0]}\right)$ Delete zero covector

Strict Abnormality

$$
\text { Let } \rho: T^{*}(T Q) \times U \rightarrow T Q \times U \text { and } \mathbf{P}=\rho\left(N_{f}^{[0]}\right) \cap \rho\left(N_{f}^{[-1]}\right)
$$

$=\emptyset$	$\rho\left(N_{f}^{[0]}\right) \neq \emptyset$	all the abnormal extremals are strict.
	$\rho\left(N_{f}^{[-1]}\right) \neq \emptyset$	all the normal extremals are strict normal.
	$\mathbf{P}=\rho\left(N_{f}^{[0]}\right)$	no strict abnormal extremals.
	$\mathbf{P}=\rho\left(N_{f}^{[0]}\right)$	local strict abnormal extremals.
	$=\rho\left(N_{f}^{[-1]}\right)$	all the abnormal extremals
are also normal and viceversa.		

Outline

(1) Optimal Control Problem for Affine Connection Control Systems
(2) Presymplectic Constraint Algorithm for ACCS
(3) Application: Time-Optimal Control PROBLEM, $F=1$

Constraint Algorithm for Time-Optimal Problem, $F=1$

Pontryagin's Hamiltonian $\quad H=H_{Z}+u^{k} H_{Y_{k}^{v}}+p_{0}$.
On the submanifold $H=0$, we obtain $N_{f}^{[-1]}$ and $N_{f}^{[0]}$.
Put condition $H=0$ Aside and apply the algorithm:

$$
\begin{aligned}
& N_{0}=N_{0}^{[0]}=N_{0}^{[-1]}=\left\{(\Lambda, u) \in T^{*}(T Q) \times U \mid H_{Y_{k}^{\vee}}=0\right\} \\
& N_{1}=\left\{(\Lambda, u) \in N_{0} \mid H_{\left[Z, Y_{k}^{\vee}\right]}=0\right\}
\end{aligned}
$$

for $k=1, \ldots, m$, and so on until N_{f}, if it exists.
The actual final constraint submanifolds are

$$
\begin{aligned}
& N_{f}^{[0]}=N_{f} \cap\left\{(\Lambda, u) \in T^{*}(T Q) \times U \mid H_{Z}+u^{k} H_{Y_{k}^{\vee}}=0\right\} \\
& N_{f}^{[-1]}=N_{f} \cap\left\{(\Lambda, u) \in T^{*}(T Q) \times U \mid H_{Z}+u^{k} H_{Y_{k}^{v}}=1\right\}
\end{aligned}
$$

Results for Time-Optimal Control Problem, $F=1$

Proposition

Let Σ be an ACCS. Given a time-optimal control problem:
(1) If $N_{f}^{[0]}$ only has zero covectors, there are no abnormal extremals.
(2) If $N_{f}^{[0]}$ has nonzero covectors and
$N_{f} \subset\left\{(\Lambda, u) \in T^{*}(T Q) \times U \mid\left(H_{z}+u^{j} H_{Y_{j}}\right)=0\right\}$, then every abnormal extremal is strict and there are no normal extremals.

REFERENCES

(R. Fullo, A. D. Lewis, Geometric Control of Mechanical Systems. Modeling, analysis and design for simple mechanical control, Texts in Applied Mathematics 49, Springer-Verlag, New York-Heidelberg-Berlin 2004.

E J. F. Cariñena, Theory of singular Lagrangians, Fortschr. Phys., 38(9)(1990), 641-679.

國 M. J. Gotay, J. M. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence theorem, Ann. Inst. H. Poincare Sect. A 30(2)(1979), 129-142.

REFERENCES

嗇 W．Liu，H．J．Sussmann，Shortest paths for sub－Riemannian metrics on rank－two distributions，Mem． Amer．Math．Soc．564，Jan． 1996.

嗇 R．Montgomery，Abnormal Minimizers，SIAM J． Control Optim．，32（6）（1994），1605－1620．

嗇 L．S．Pontryagin，V．G．Boltyanski，R．V． Gamkrelidze and E．F．Mischenko，The Mathematical Theory of Optimal Processes，Interscience Publishers，Inc．，New York 1962.

