The Orbit Space of a Proper Groupoid

Miguel Rodríguez-Olmos

EPFL, Switzerland

Joint work with

Oana Dragulete (EPFL) Rui Loja Fernandes (IST) Tudor S. Ratiu (EPFL)

過 ト イヨト イヨト

Let G be a Lie group, M a smooth manifold and

 $G \times M \to M$

a proper smooth action.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a Lie group, M a smooth manifold and

$$G \times M \to M$$

a proper smooth action.

• If the action is free, M/G is a smooth manifold in the quotient topology.

• • = • • = •

Let G be a Lie group, M a smooth manifold and

 $G \times M \to M$

a proper smooth action.

- If the action is free, M/G is a smooth manifold in the quotient topology.
- If the action is not free, M/G is a locally semi-algebraic space endowed with a canonical Whitney stratification.

• • = • • = •

Let G be a Lie group, M a smooth manifold and

 $G \times M \to M$

a proper smooth action.

- If the action is free, M/G is a smooth manifold in the quotient topology.
- If the action is not free, M/G is a locally semi-algebraic space endowed with a canonical Whitney stratification.

This correspond to a particular case of a groupoid: The action groupoid:

$$G \times M \rightrightarrows M$$

通 ト イヨ ト イヨ ト

Let G be a Lie group, M a smooth manifold and

 $G \times M \to M$

a proper smooth action.

- If the action is free, M/G is a smooth manifold in the quotient topology.
- If the action is not free, M/G is a locally semi-algebraic space endowed with a canonical Whitney stratification.

This correspond to a particular case of a groupoid: The action groupoid:

$$G \times M \rightrightarrows M$$

and M/G is precisely the orbit space of this action groupoid.

周下 소문도 소문도 - 프

$$s, t: \mathcal{G}
ightrightarrow M$$

be a groupoid.

3

(人間) システン イラン

$$s, t: \mathcal{G}
ightrightarrow M$$

be a groupoid. Let

$$\mathcal{O}_x = t(s^{-1}(x))$$

be the orbit through $x \in M$,

3

・ 何 ト ・ ヨ ト ・ ヨ ト

$$s, t: \mathcal{G}
ightrightarrow M$$

be a groupoid. Let

$$\mathcal{O}_x = t(s^{-1}(x))$$

be the orbit through $x \in M$, and define the equivalence class

$$x \sim y$$
 if $\mathcal{O}_x = \mathcal{O}_y$ for $x, y \in M$.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

$$s, t: \mathcal{G}
ightrightarrow M$$

be a groupoid. Let

$$\mathcal{O}_x = t(s^{-1}(x))$$

be the orbit through $x \in M$, and define the equivalence class

$$x \sim y$$
 if $\mathcal{O}_x = \mathcal{O}_y$ for $x, y \in M$.

Then the orbit space of \mathcal{G} is $M/\mathcal{G} := M/\sim$.

・ 伺 ト ・ ヨ ト ・ ヨ ト …

• $\mathcal{G} = G \times M$

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

•
$$t(g, x) = g \cdot x$$

3

(日) (周) (三) (三)

•
$$\mathcal{G} = G \times M$$

•
$$s(g, x) = x$$

•
$$t(g, x) = g \cdot x$$

and then the orbit space M/G is exactly M/G.

< 回 ト < 三 ト < 三 ト

- $\mathcal{G} = \mathcal{G} \times \mathcal{M}$
- s(g, x) = x
- $t(g, x) = g \cdot x$

and then the orbit space M/G is exactly M/G.

QUESTION: What is the structure of M/G for a general (not action) groupoid? In particular

・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- $\mathcal{G} = \mathcal{G} \times \mathcal{M}$
- s(g, x) = x
- $t(g, x) = g \cdot x$

and then the orbit space M/G is exactly M/G.

QUESTION: What is the structure of M/G for a general (not action) groupoid? In particular

• Is it a Whitney stratified space?

通 と く き と く き と … き

- $\mathcal{G} = \mathcal{G} \times \mathcal{M}$
- s(g, x) = x
- $t(g, x) = g \cdot x$

and then the orbit space M/G is exactly M/G.

QUESTION: What is the structure of M/G for a general (not action) groupoid? In particular

- Is it a Whitney stratified space?
- In that case, what is the global description of the strata?

通 ト イヨ ト イヨ ト

1 Proper Lie Group Actions

4

(日) (周) (三) (三)

Proper Lie Group Actions

2 Proper Lie Groupoids

3

< 回 ト < 三 ト < 三 ト

- 1 Proper Lie Group Actions
- 2 Proper Lie Groupoids
- 3 Orbit Space of a Proper Groupoid: Local

• • = • • = •

- Proper Lie Group Actions
- 2 Proper Lie Groupoids
- 3 Orbit Space of a Proper Groupoid: Local
- Orbit Space of a Proper Groupoid: Global

- Proper Lie Group Actions
- 2 Proper Lie Groupoids
- 3 Orbit Space of a Proper Groupoid: Local
- Orbit Space of a Proper Groupoid: Global

5 Applications

A B F A B F

1 Proper Lie Group Actions

- Proper Lie Groupoids
- 3 Orbit Space of a Proper Groupoid: Local
- Orbit Space of a Proper Groupoid: Global

5 Applications

• • = • • = •

Stratifications

Definition

A topological space S is a stratified space if for every $x \in S$ there exists a neighborhood U and a finite family of disjoint locally closed smooth manifolds $U_i \subset U, i \in \mathcal{I}$ such that

一日、

Stratifications

Definition

A topological space S is a stratified space if for every $x \in S$ there exists a neighborhood U and a finite family of disjoint locally closed smooth manifolds $U_i \subset U, i \in \mathcal{I}$ such that

•
$$U = \bigcup_{i \in \mathcal{I}} U_i$$
,

• If
$$i \neq j$$
, $U_i \cap \overline{U_j} \neq \varnothing \Rightarrow U_i \subset \overline{U_j}$.

一日、

Stratifications

Definition

A topological space S is a stratified space if for every $x \in S$ there exists a neighborhood U and a finite family of disjoint locally closed smooth manifolds $U_i \subset U, i \in \mathcal{I}$ such that

•
$$U = \bigcup_{i \in \mathcal{I}} U_i$$
,

• If
$$i \neq j$$
, $U_i \cap \overline{U_j} \neq \varnothing \Rightarrow U_i \subset \overline{U_j}$.

The stratification is called Whitney if for every pair $U_i \subset \overline{U_j}$,

$$U_j \ni \{x_k\}_{k \in \mathbb{N}} \to x \in U_i \Rightarrow T_{x_k}U_j \to V > T_xU_i$$

(this requires an embedding of \mathcal{U} in \mathbb{R}^N).

If S is a stratified space then there is a family of disjoint locally closed smooth manifolds S_k , $k \in I_S$ such that for every $k \in I_S$

 $\mathcal{S}_k \cap U = U_i$, for some $i \in \mathcal{I}_U$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ 三日

If S is a stratified space then there is a family of disjoint locally closed smooth manifolds S_k , $k \in I_S$ such that for every $k \in I_S$

 $\mathcal{S}_k \cap U = U_i$, for some $i \in \mathcal{I}_U$.

The manifolds S_k are called the strata of the stratification.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let G be a Lie group, M a smooth manifold and

 $G \times M \to M$

a proper smooth action. Let $\pi: M \to M/G$ be the projection.

Let G be a Lie group, M a smooth manifold and

 $G \times M \to M$

a proper smooth action. Let $\pi: M \to M/G$ be the projection.

Local: A proper Lie group action admits slices and tubes (Palais). Then

Let G be a Lie group, M a smooth manifold and

 $G \times M \to M$

a proper smooth action. Let $\pi: M \to M/G$ be the projection.

Local: A proper Lie group action admits slices and tubes (Palais). Then
If x ∈ M, then there is a neighborhood U of [x] in M/G such that

$$U \simeq \mathbf{S}/G_x$$

where **S** is a linear slice for the *G*-action at x and G_x is the stabilizer of x which has a linear representation on **S**.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let G be a Lie group, M a smooth manifold and

 $G \times M \to M$

a proper smooth action. Let $\pi: M \to M/G$ be the projection.

Local: A proper Lie group action admits slices and tubes (Palais). Then

• If $x \in M$, then there is a neighborhood U of [x] in M/G such that

$$U \simeq \mathbf{S}/G_x$$

where **S** is a linear slice for the *G*-action at *x* and G_x is the stabilizer of *x* which has a linear representation on **S**.

 Since the action is proper G_x is compact, therefore using Invariant theory (Hilbert, Schwartz, Tarski-Seidenberg,...) U is a semi-algebraic Whitney stratified space (isotropy stratification)

(日) (間) (目) (日) (日)

$$M_{(H)} = \{x \in M : G_x \text{ is conjugate to } H\}$$
 (orbit types).

Then

4

イロト イヨト イヨト イヨト

$$M_{(H)} = \{x \in M : G_x \text{ is conjugate to } H\}$$
 (orbit types).

Then

• The connected components of $M_{(H)}$ are submanifolds of M for every $H \subset G$.

3

▲圖▶ ▲国▶ ▲国▶

$$M_{(H)} = \{x \in M : G_x \text{ is conjugate to } H\}$$
 (orbit types).

Then

- The connected components of $M_{(H)}$ are submanifolds of M for every $H \subset G$.
- $M = \bigcup_{(H)} M_{(H)}$ is a locally finite disjoint partition.

(人間) システン ステン・テ

$$M_{(H)} = \{x \in M : G_x \text{ is conjugate to } H\}$$
 (orbit types).

Then

- The connected components of $M_{(H)}$ are submanifolds of M for every $H \subset G$.
- $M = \bigcup_{(H)} M_{(H)}$ is a locally finite disjoint partition.
- The connected components of $\pi(M_{(H)})$ are the smooth strata of the isotropy stratification of M/G.

(本間) (本語) (本語) (語)
Outline

Proper Lie Group Actions

2 Proper Lie Groupoids

- 3 Orbit Space of a Proper Groupoid: Local
- Orbit Space of a Proper Groupoid: Global

5 Applications

- E > - E >

Let $s, t : \mathcal{G} \rightrightarrows M$ a Lie groupoid.

The analogous construction to the Lie group case cannot be used for studying M/G since the stabilizers

$$\mathcal{G}_x = s^{-1}(x) \cap t^{-1}(x)$$

cannot be compared by conjugation at points lying in different orbits.

1

通 ト イヨ ト イヨ ト

Let $s, t : \mathcal{G} \rightrightarrows M$ a Lie groupoid.

The analogous construction to the Lie group case cannot be used for studying M/G since the stabilizers

$$\mathcal{G}_x = s^{-1}(x) \cap t^{-1}(x)$$

cannot be compared by conjugation at points lying in different orbits.

Therefore we cannot define orbit types $M_{(H)}$. We need a different approach

Tube theorem + Foliation theory

- 本間下 소문下 소문下 - 臣

Tube theorem for proper groupoids

We will assume the following conditions for the Lie groupoid $s, t : \mathcal{G} \rightrightarrows M$:

- $(s,t): \mathcal{G} \to M \times M$ is a proper map. (proper groupoid)
- s is locally trivial. (source local triviality)
- Every orbit of \mathcal{G} is of finite type.

Tube theorem for proper groupoids

We will assume the following conditions for the Lie groupoid $s, t : \mathcal{G} \rightrightarrows M$:

- $(s,t): \mathcal{G} \to M \times M$ is a proper map. (proper groupoid)
- s is locally trivial. (source local triviality)
- Every orbit of \mathcal{G} is of finite type.

Theorem (Weinstein, Zung)

Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper groupoid and $x \in M$ with orbit \mathcal{O} .

Tube theorem for proper groupoids

We will assume the following conditions for the Lie groupoid $s, t : \mathcal{G} \rightrightarrows M$:

- $(s,t): \mathcal{G} \to M \times M$ is a proper map. (proper groupoid)
- *s* is locally trivial. (source local triviality)
- Every orbit of \mathcal{G} is of finite type.

Theorem (Weinstein, Zung)

Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper groupoid and $x \in M$ with orbit \mathcal{O} . Then there is an a action of $\mathcal{G}_{\mathcal{O}}$ on $N\mathcal{O} = T_{\mathcal{O}}M/T\mathcal{O}$, with associated action groupoid

$$\mathcal{G}_{\mathcal{O}} \ltimes \mathit{N}\mathcal{O} \rightrightarrows \mathit{N}\mathcal{O} \quad \textit{and} \quad$$

 \mathcal{G} is locally isomorphic to $\mathcal{G}_{\mathcal{O}} \ltimes N\mathcal{O}$.

・ロン ・聞と ・ ほと ・ ほと

Using the Tube theorem we can prove that every proper groupoid is locally Morita equivalent to an action groupoid for a representation of a compact group on a vector space.

< 回 ト < 三 ト < 三 ト

Using the Tube theorem we can prove that every proper groupoid is locally Morita equivalent to an action groupoid for a representation of a compact group on a vector space.

Theorem

Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper groupoid, and $x \in M$.

Using the Tube theorem we can prove that every proper groupoid is locally Morita equivalent to an action groupoid for a representation of a compact group on a vector space.

Theorem

Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper groupoid, and $x \in M$.

Then the action of $\mathcal{G}_{\mathcal{O}}$ on N \mathcal{O} restricts to a representation of \mathcal{G}_x on $N_x\mathcal{O}$ $(\mathcal{G}_x = s^{-1}(x) \cap t^{-1}(x)$ is the stabilizer, a compact Lie group) with associated action groupoid

$$\mathcal{G}_x imes \mathit{N}_x \mathcal{O}
ightarrow \mathit{N}_x \mathcal{O}, \quad \textit{and}$$

・ロト ・回ト ・ヨト ・ヨト

Using the Tube theorem we can prove that every proper groupoid is locally Morita equivalent to an action groupoid for a representation of a compact group on a vector space.

Theorem

Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper groupoid, and $x \in M$.

Then the action of $\mathcal{G}_{\mathcal{O}}$ on N \mathcal{O} restricts to a representation of \mathcal{G}_x on $N_x\mathcal{O}$ $(\mathcal{G}_x = s^{-1}(x) \cap t^{-1}(x)$ is the stabilizer, a compact Lie group) with associated action groupoid

$$\mathcal{G}_x imes \mathit{N}_x \mathcal{O}
ightarrow \mathit{N}_x \mathcal{O},$$
 and

 \mathcal{G} is locally Morita equivalent to $\mathcal{G}_x \times N_x \mathcal{O}$.

・ロト ・回ト ・ヨト ・ヨト

() By the Tube theorem, \mathcal{G} is locally isomorphic to $\mathcal{G}_{\mathcal{O}} \ltimes N\mathcal{O}$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- **1** By the Tube theorem, \mathcal{G} is locally isomorphic to $\mathcal{G}_{\mathcal{O}} \ltimes N\mathcal{O}$
- Porm the bi-bundle

- **1** By the Tube theorem, \mathcal{G} is locally isomorphic to $\mathcal{G}_{\mathcal{O}} \ltimes N\mathcal{O}$
- 2 Form the bi-bundle

with $\pi_1(g, v) = g \cdot v$ and $\pi_2(g, v) = v$.

$$\begin{array}{rcl} (\mathcal{G}_{\mathcal{O}} \ltimes \mathcal{N}\mathcal{O}) \times (s^{-1}(x) \times \mathcal{N}_{x}\mathcal{O}) & \to & (s^{-1}(x) \times \mathcal{N}_{x}\mathcal{O}) \\ & & (g',v') \cdot (g,v) & \mapsto & (g'g,v), \end{array}$$

- **(**) By the Tube theorem, \mathcal{G} is locally isomorphic to $\mathcal{G}_{\mathcal{O}} \ltimes N\mathcal{O}$
- Porm the bi-bundle

- **1** By the Tube theorem, \mathcal{G} is locally isomorphic to $\mathcal{G}_{\mathcal{O}} \ltimes N\mathcal{O}$
- 2 Form the bi-bundle

These two actions are free, they commute and the momentum map of one is the orbit map of the other.

Outline

Proper Lie Group Actions

2 Proper Lie Groupoids

3 Orbit Space of a Proper Groupoid: Local

Orbit Space of a Proper Groupoid: Global

5 Applications

< 3 > < 3 >

Since \mathcal{G} is locally Morita equivalent to $\mathcal{G}_x \times N_x \mathcal{O}$ then near [x]

 $M/\mathcal{G} \sim N_x \mathcal{O}/\mathcal{G}_x$ (local homeomorphism).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Since \mathcal{G} is locally Morita equivalent to $\mathcal{G}_x \times N_x \mathcal{O}$ then near [x]

 $M/\mathcal{G} \sim N_x \mathcal{O}/\mathcal{G}_x$ (local homeomorphism).

Therefore locally the orbit space of \mathcal{G} is a quotient for a representation of a compact Lie group.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Since \mathcal{G} is locally Morita equivalent to $\mathcal{G}_x \times N_x \mathcal{O}$ then near [x]

 $M/\mathcal{G} \sim N_x \mathcal{O}/\mathcal{G}_x$ (local homeomorphism).

Therefore locally the orbit space of \mathcal{G} is a quotient for a representation of a compact Lie group.

In particular

Theorem

The orbit space for a source locally trivial proper groupoid is a locally semi-algebraic Whitney stratified space.

Outline

Proper Lie Group Actions

- Proper Lie Groupoids
- 3 Orbit Space of a Proper Groupoid: Local
- Orbit Space of a Proper Groupoid: Global

5 Applications

•
$$\mathcal{G}_{bas}(M) = \{X \in \mathfrak{X}(M) : Xf \in C^{\mathcal{G}}(M) \, \forall f \in C^{\mathcal{G}}(M) \},\$$

3

(日) (周) (三) (三)

- $\mathcal{G}_{\mathsf{bas}}(M) = \{ X \in \mathfrak{X}(M) : Xf \in C^{\mathcal{G}}(M) \, \forall f \in C^{\mathcal{G}}(M) \},$
- $\mathcal{A}(N_x\mathcal{O}) = \{X + Y : X \in \mathfrak{X}^{\mathcal{G}_x}(N_x\mathcal{O}), \text{ } Y \text{ tangent to orbits} \}.$

3

- $\mathcal{G}_{\mathsf{bas}}(M) = \{ X \in \mathfrak{X}(M) : Xf \in C^{\mathcal{G}}(M) \, \forall f \in C^{\mathcal{G}}(M) \},$
- $\mathcal{A}(N_x\mathcal{O}) = \{X + Y : X \in \mathfrak{X}^{\mathcal{G}_x}(N_x\mathcal{O}), Y \text{ tangent to orbits}\}.$

It is well-known that

Lemma

- $\mathcal{A}(N_x\mathcal{O})$ defines a singular integrable distribution,
- its leaves are \mathcal{G}_{x} -invariant,
- the strata of $N_x \mathcal{O}/\mathcal{G}_x$ are the projection of the leaves of $\mathcal{A}(N_x \mathcal{O})$.

くぼう くほう くほう

- $\mathcal{G}_{\mathsf{bas}}(M) = \{ X \in \mathfrak{X}(M) : Xf \in C^{\mathcal{G}}(M) \, \forall f \in C^{\mathcal{G}}(M) \},$
- $\mathcal{A}(N_x\mathcal{O}) = \{X + Y : X \in \mathfrak{X}^{\mathcal{G}_x}(N_x\mathcal{O}), Y \text{ tangent to orbits}\}.$

It is well-known that

Lemma

- $\mathcal{A}(N_x\mathcal{O})$ defines a singular integrable distribution,
- its leaves are \mathcal{G}_{x} -invariant,
- the strata of $N_x O/G_x$ are the projection of the leaves of $\mathcal{A}(N_x O)$.

With this Lemma and the Morita equivalence we can prove:

Theorem

Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper groupoid. Then

- $\mathcal{G}_{bas}(M)$ induces a singular integrable distribution,
- the strata of M/G are the projections of the leaves of $\mathcal{G}_{bas}(M)$.

▲口> ▲圖> ▲注> ▲注> 三項

• For each $x \in M$ there is a saturated neighborhood U of \mathcal{O} Morita equivalent to $\mathcal{G}_x \times N_x \mathcal{O}$

3

- For each $x \in M$ there is a saturated neighborhood U of O Morita equivalent to $G_x \times N_x O$
- ② Morita equivalence $\Rightarrow G_{bas}(M)_U \longleftrightarrow A(N_x O)$ (1:1).

3

- For each x ∈ M there is a saturated neighborhood U of O Morita equivalent to G_x × N_xO
- **2** Morita equivalence $\Rightarrow \mathcal{G}_{bas}(M)_U \longleftrightarrow \mathcal{A}(N_x\mathcal{O})$ (1:1).
- Solution by the general properties of stratifications and the Lemma, for each stratum S_i of M/\mathcal{G} ,

 $\mathcal{S}_i \cap U/\mathcal{G}_U$ is the projection of a leaf of $\mathcal{G}_{\mathsf{bas}}(M)_U$

- 本間 と えき と えき とうき

- For each x ∈ M there is a saturated neighborhood U of O Morita equivalent to G_x × N_xO
- **2** Morita equivalence $\Rightarrow \mathcal{G}_{bas}(M)_U \longleftrightarrow \mathcal{A}(N_x\mathcal{O})$ (1:1).
- Solution by the general properties of stratifications and the Lemma, for each stratum S_i of M/\mathcal{G} ,

 $\mathcal{S}_i \cap U/\mathcal{G}_U$ is the projection of a leaf of $\mathcal{G}_{\mathsf{bas}}(M)_U$

- by the maximality property of the leaves of a foliation, we have globally
 - S_i is the projection of a leaf of $\mathcal{G}_{bas}(M)$

・ロン ・聞と ・ヨン ・ヨン 三年

Outline

Proper Lie Group Actions

- Proper Lie Groupoids
- 3 Orbit Space of a Proper Groupoid: Local
- Orbit Space of a Proper Groupoid: Global

5 Applications

- E > - E >

Let $a : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action.

< 回 ト < 三 ト < 三 ト

Let $a : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action.

• The action algebroid of this action is $\pi : \mathfrak{g} \times M \to M$ with projection $\pi(\xi, x) = x$ and anchor $\rho_A(\xi, x) = a(\xi)(x)$.

通 ト イヨ ト イヨ ト

Let $a : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action.

- The action algebroid of this action is $\pi : \mathfrak{g} \times M \to M$ with projection $\pi(\xi, x) = x$ and anchor $\rho_A(\xi, x) = a(\xi)(x)$.
- If the vector fields a(ξ) are not complete, this action does not integrate to a Lie group action. Therefore there is no quotient M/G.

通 ト イヨ ト イヨ ト

Let $a : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action.

- The action algebroid of this action is $\pi : \mathfrak{g} \times M \to M$ with projection $\pi(\xi, x) = x$ and anchor $\rho_A(\xi, x) = a(\xi)(x)$.
- If the vector fields a(ξ) are not complete, this action does not integrate to a Lie group action. Therefore there is no quotient M/G.
- However the action algebroid is integrable to a Lie groupoid $\mathcal{G} \rightrightarrows M$.

Therefore we can define the quotient of a non-complete action as M/G. By our result this is a Whitney stratified space

Which are the strata of M/G?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

2. Hamiltonian groupoid actions

Let (M, ω) be a symplectic manifold, $(\mathcal{P}, \{\cdot, \cdot\})$ an integrable Poisson manifold and $J: M \to \mathcal{P}$ a Poisson map.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

2. Hamiltonian groupoid actions

Let (M, ω) be a symplectic manifold, $(\mathcal{P}, \{\cdot, \cdot\})$ an integrable Poisson manifold and $J : M \to \mathcal{P}$ a Poisson map.

 There is a (Hamiltonian) action of the symplectic groupoid of Σ(P) on M with momentum map J.

くぼう くほう くほう

2. Hamiltonian groupoid actions

Let (M, ω) be a symplectic manifold, $(\mathcal{P}, \{\cdot, \cdot\})$ an integrable Poisson manifold and $J : M \to \mathcal{P}$ a Poisson map.

- There is a (Hamiltonian) action of the symplectic groupoid of Σ(P) on M with momentum map J.
- The orbit space for this action is the same as the orbit space M/\mathcal{G} where \mathcal{G} is the action groupoid

$$\Sigma(\mathcal{P}) \ltimes M \rightrightarrows M$$

Is M/G a Whitney-Poisson stratified space?, Which are the strata?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …
THE END

4

<ロ> (日) (日) (日) (日) (日)