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Theorem 2. (Lagrangian Noether’s theorem): Let Y ∈ X(T 1
kQ) be an infinitesimal Cartan symmetry.

1. For every p ∈ T 1
kQ, there is an open neighborhood Up such that the functions fA = i(Y )θAL − ζA

define a conservation law f = (f1, . . . , fk) on Up.
In particular, if Y = ZC ∈ X(T 1

kQ) is an infinitesimal natural Cartan symmetry then the functions
fA = ZVA(L)− ζA define a conservation law on Up.

2. For every Γ = (Γ1, . . . ,Γk) ∈ XkL(T 1
kQ), we have

∑k
A=1 L(ΓA)fA = 0 (on Up).

LAGRANGIAN k-SYMPLECTIC CASE
GEOMETRIC ELEMENTS

Let Q be a n-dimensional differentiable manifold, and T 1
kQ = TQ⊕ k. . . ⊕TQ its k-tangent bundle with

natural projection τ : T 1
kQ→ Q. Natural coordinates on T 1

kQ are (qi, viA).

For Zq ∈ TqQ, the vertical A-lift at (v1q, . . . , vkq) ∈ T 1
kQ is the vector (Zq)

VA tangent to τ−1(q) ⊂ T 1
kQ,

(Zq)
VA(v1q, . . . , vA) =

d

ds
(v1q, . . . , vA−1q, vAq

+ sZq, vA+1q, . . . , vkq)|s=0 .

Locally, if Xq = ai
∂

∂qi

∣∣∣
q
, then (Zq)

VA(v1q, . . . , vkq) = ai
∂

∂viA

∣∣∣
(v1q,...,vkq)

.

The canonical k-tangent structure on T 1
kQ is the set (S1, . . . , Sk) of (1, 1)-tensor fields defined by

SA(wq)(Zwq) = (τ∗(wq)(Zwq))
VA(wq) , for wq ∈ T 1

kQ, Zwq ∈ Twq(T 1
kQ) .

The Liouville vector field ∆ ∈ X(T 1
kQ), is the infinitesimal generator of the flow

ψ : R× T 1
kQ −→ T 1

kQ , ψ(s, v1q, . . . , vkq) = (esv1q, . . . , e
svkq) ,

Locally, SA = ∂
∂viA

⊗ dqi, and ∆ =
∑k
A=1 ∆A =

∑k
A=1 v

i
A

∂
∂viA

.

Being ϕ : Q→ Q a diffeomorphism, its canonical prolongation to T 1
kQ is T 1

kϕ : T 1
kQ→ T 1

kQ given by

T 1
kϕ(v1q, . . . , vkq) = (ϕ∗(q)v1q, . . . , ϕ∗(q)vkq) , (v1q, . . . , vkq) ∈ (T 1

k )qQ , q ∈ Q .

LetZ ∈ X(Q), with local 1-parametric group hs : Q→ Q, the canonical lift ofZ to (T 1
k )qQ is ZC ∈ X(T 1

kQ)

generated by T 1
khs : T 1

kQ→ T 1
kQ. Locally, if Z = Zi

∂

∂qi
, then ZC = Zi

∂

∂qi
+ v

j
A

∂Zk

∂qj
∂

∂vkA
.

Definition 4. A second order partial differential equation (SOPDE) is a k-vector field Γ in T 1
kQ which is

a section of the projection T 1
kτ : T 1

k (T 1
kQ) → T 1

kQ; that is, T 1
kτ ◦ Γ = IdT 1

kQ
.

Locally, a SOPDE Γ = (Γ1, . . . ,Γk) is given by ΓA(qi, viA) = viA
∂

∂qi
+ (ΓA)iB

∂

∂viB
, (ΓA)iB ∈ C∞(T 1

kQ).

Proposition 3. If ψ is an integral section of an integrable SOPDE Γ, then ψ = φ(1), being φ(1) the first

prolongation of φ = τ ◦ ψ, and φ is a solution to the system
∂2φi

∂tA∂tB
(t) = (ΓA)iB

(
φi(t),

∂φi

∂tC
(t)

)
.

Conversely, if φ : Rk → Q is a solution to this system, then φ(1) is an integral section of Γ.

k-SYMPLECTIC LAGRANGIAN SYSTEMS

Let L : T 1
kQ→ R be a Lagrangian. The generalized Euler-Lagrange equations for L are:

k∑
A=1

∂

∂tA

∣∣∣
t

(
∂L

∂viA

∣∣∣
ψ(t)

)
=
∂L

∂qi

∣∣∣
ψ(t)

, viA(ψ(t)) =
∂ψi

∂tA
(2)

whose solutions are maps ψ : Rk → T 1
kQ. Observe that ψ(t) = φ(1)(t), for some φ = τ ◦ ψ.

We introduce the forms θAL = dL ◦ SA ∈ Ω1(T 1
kQ) , ωAL = −dθAL ∈ Ω2(T 1

kQ) , and the Energy
Lagrangian function EL = ∆(L)− L ∈ C∞(T 1

kQ) . Locally

θAL =
∂L

∂viA
dqi , ωAL =

∂2L

∂qj∂viA
dqi ∧ dqj +

∂2L

∂v
j
B∂v

i
A

dqi ∧ dv
j
B , EL = viA

∂L

∂viA
− L .

The Lagrangian L : T 1
kQ −→ R is regular if the matrix

(
∂2L

∂viA∂v
j
B

)
is not singular at every point of T 1

kQ.

This condition is equivalent to say that (ω1
L, . . . , ω

k
L;V ) is a k-symplectic structure, where V = kerτ∗.

The family (T 1
kQ,ω

A
L , EL) is called a k-symplectic Lagrangian system.

Let XkL(T 1
kQ) the set of k-vector fields Γ = (Γ1, . . . ,Γk) in T 1

kQ, which are solutions to the equation

k∑
A=1

i(ΓA)ωAL = dEL . (3)

Locally, if ΓA = (ΓA)i
∂

∂qi
+ (ΓA)iB

∂

∂viB
and L is regular, then Γ = (Γ1, . . . ,Γk) is a solution to (3) iff

∂2L

∂qj∂viA
v
j
A +

∂2L

∂viA∂v
j
B

(ΓA)
j
B =

∂L

∂qi
, (ΓA)i = viA .

Thus, if Γ ∈ XkL(T 1
kQ) then it is a SOPDE and, if it is integrable, its integral sections are first prolongations

of maps φ : Rk → Q which are solutions to the Euler-Lagrange equations (2).

SYMMETRIES AND CONSERVATION LAWS

Definitions 2, 3, and Propositions 1, 2 are also applied to the Lagrangian case, just considering (T 1
kQ,ω

A
L , EL)

as a Hamiltonian system with Hamiltonian function EL. Furthermore:

Definition 2. A conservation law (or a conserved quantity) for the HDW equations (1) is a map F =

(F1, . . . ,Fk) : (T 1
k )∗Q→ Rk such that the divergence ofF◦ψ = (F1◦ψ, . . . ,Fk◦ψ) : U0 ⊂ Rk → Rk

is zero for every solution ψ to the Hamilton-de Donder-Weyl equations (1); that is
k∑

A=1

∂(FA ◦ ψ)

∂tA
= 0.

Proposition 1. If F = (F1, . . . ,Fk) : (T 1
k )∗Q → Rk is a conservation law, then for every integrable

k-vector field X = (X1, . . . , Xk) ∈ XkH((T 1
k )∗Q) we have

k∑
A=1

L(XA)FA = 0.

Definition 3. Let ((T 1
k )∗Q,ωA, H) be a k-symplectic Hamiltonian system.

1 (a) A symmetry is a diffeomorphism Φ: (T 1
k )∗Q→ (T 1

k )∗Q such that, for every solution ψ to the HDW
equations (1), we have Φ ◦ ψ is also a solution to these equations.

(b) An infinitesimal symmetry is a vector field Y ∈ X((T 1
k )∗Q) whose local flows are local symmetries.

2 (a) A Cartan or Noether symmetry is a diffeomorphism Φ: (T 1
k )∗Q→ (T 1

k )∗Q such that:
(i) Φ∗ωA = ωA, (ii) Φ∗H = H (up to a constant).

(b) An infinitesimal Cartan symmetry is a vector field Y ∈ X((T 1
k )∗Q) such that:

(i) L(Y )ωA = 0, (ii) L(Y )H = 0.

If Φ = (T 1
k )∗ϕ for some ϕ : Q→ Q, the (Cartan) symmetry Φ is said to be natural.

If Y = ZC∗ for some Z ∈ X(Q), the infinitesimal (Cartan) symmetry Y is said to be natural.

Remarks: F If Φ: (T 1
k )∗Q→ (T 1

k )∗Q is a Cartan symmetry, then it is a symmetry.

F If X = (X1, . . . , Xk) ∈ XkH((T 1
k )∗Q), then Φ∗X = (Φ∗X1, . . . ,Φ∗Xk) ∈ XkH((T 1

k )∗Q).

Proposition 2. Let Y ∈ X((T 1
k )∗Q) be an infinitesimal Cartan symmetry. Then, for every p ∈ (T 1

k )∗Q,
there is an open neighbourhood Up 3 p, such that:

1. There exist fA ∈ C∞(Up), unique up to constant functions, such that i(Y )ωA = dfA (on Up).

2. There exist ζA ∈ C∞(Up), verifying that L(Y )θA = dζA, on Up; and then fA = i(Y )θA − ζA (up to
constant functions on Up).

Theorem 1. (Noether’s theorem): Let Y ∈ X((T 1
k )∗Q) be an infinitesimal Cartan symmetry.

1. For every p ∈ (T 1
k )∗Q, there is an open neighborhood Up such that the functions fA = i(Y )θA − ζA

define a conservation law f = (f1, . . . , fk) on Up.

2. For every X = (X1, . . . , Xk) ∈ XkH((T 1
k )∗Q), we have

∑k
A=1 L(XA)fA = 0 (on Up).

HAMILTONIAN k-SYMPLECTIC CASE
GEOMETRIC ELEMENTS. k-SYMPLECTIC HAMILTONIAN SYSTEMS

Let Q be a n-dimensional differentiable manifold, (T 1
k )∗Q = T ∗Q⊕ k. . . ⊕T ∗Q, its k-cotangent bundle

with projection τ∗ : (T 1
k )∗Q→ Q. Natural coordinates on (T 1

k )∗Q are (qi, pAi ); 1 ≤ i ≤ n, 1 ≤ A ≤ k.

The canonical k-symplectic structure in (T 1
k )∗Q is (ωA, V ), where V = ker(τ∗)∗, and ωA = (τ∗A)∗ω =

−d(τ∗A)∗θ = −dθA; being ω = −dθ the canonical symplectic structure in T ∗Q (θ ∈ Ω1(T ∗Q) is the
Liouville 1-form), and τ∗A : (T 1

k )∗Q→ T ∗Q the projection on the Ath-copy T ∗Q of (T 1
k )∗Q. Locally

ωA = −dθA = −d(pAi dqi) = dqi ∧ dpAi .

Being ϕ : Q→ Q a diffeomorphism, its canonical prolongation to (T 1
k )∗Q is (T 1

k )∗ϕ : (T 1
k )∗Q→ (T 1

k )∗Q

(T 1
k )∗ϕ(α1q, . . . , αkq) = (T ∗ϕ(α1q), . . . , T

∗ϕ(αkq)) , (α1q, . . . , αkq) ∈ (T 1
k )∗qQ, q ∈ Q .

Let Z ∈ X(Q), with local 1-parametric group of transformations hs : Q → Q, the canonical lift of Z to

(T 1
k )∗qQ is ZC∗ ∈ X((T 1

k )∗Q) generated by (T 1
k )∗(hs) : (T 1

k )∗Q → (T 1
k )∗Q. Locally, if Z = Zi

∂

∂qi
then

ZC∗ = Zi
∂

∂qi
− pAj

∂Zj

∂qk
∂

∂pAk
.

Definition 1. Let M be a differentiable manifold and its k-tangent bundle T 1
kM = TM⊕ k. . . ⊕TM .

• A k-vector field on M is a section X : M −→ T 1
kM of τ .

A k-vector field X defines a family of vector fields X1, . . . , Xk ∈ X(M) by XA = τA ◦ X, where
τA : T 1

kQ→ TQ is the projection on the Ath-copy TQ of T 1
kQ.

• An integral section of X at a point q ∈ M , is a map ψ : U0 ⊂ Rk → M , with 0 ∈ U0, such that

ψ(0) = q, ψ∗(t)
(

∂

∂tA

∣∣∣
t

)
= XA(ψ(t)), for every t ∈ U0.

A k-vector field X on M is integrable if there is an integral section passing through every point of M .

Locally, ψ(1)(t1, . . . , tk) =

(
ψi(t1, . . . , tk),

∂ψi

∂tA
(t1, . . . , tk)

)
.

Let H : (T 1
k )∗Q → R be a Hamiltonian function. The family ((T 1

k )∗Q,ωA, H) is a k-symplectic Hamil-
tonian system. The Hamilton-de Donder-Weyl (HDW) equations are

∂H

∂qi

∣∣∣
ψ(t)

= −
k∑

A=1

∂ψAi

∂tA

∣∣∣
t

,
∂H

∂pAi

∣∣∣
ψ(t)

=
∂ψi

∂tA

∣∣∣
t
, (1)

where ψ : Rk → (T 1
k )∗Q, ψ(t) = (ψi(t), ψAi (t)), is a solution.

Let XkH((T 1
k )∗Q) be the set of k-vector fields on (T 1

k )∗Q which are solutions to the equations

k∑
A=1

i(XA)ωA = dH .

If X ∈ XkH((T 1
k )∗Q) is integrable, and ψ : Rk → (T 1

k )∗Q is an integral section of X, then ψ(t) =

(ψi(t), ψAi (t)) is a solution to the HDW equations (1).

SYMMETRIES AND CONSERVATION LAWS

SUMMARY
k-symplectic geometry provides the simplest geometric framework for describing certain class of first-
order classical field theories. Using this description we analyze different kinds of symmetries for the
Hamiltonian and Lagrangian formalisms of these field theories, including the study of conservation laws
associated to them, and stating Noether’s theorem in different situations.
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