Schwartzman and Ruelle-...

Solenoids

Realization of real . . .

Conjecture

Full Screen

Close

Quit

Ergodic Solenoids

Vicente Muñoz (CSIC)

joint work with Ricardo Pérez-Marco

ArXiv: math.DG/0702501

email: vicente.munoz@imaff.cfmac.csic.es

5-8 September 2007

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Close

Quit

1. Introduction

One of the most attractive problems in differential geometry is that of realizing geometrically homology classes:

M smooth compact manifold of dimension n. $a \in H_k(M, \mathbb{Z}), k < n$. Does there exist a submanifold $S \subset M$ such that [S] = a?

Thom (1953) gave the answer:

- Not always. There are counterexamples (e.g. for some torsion homology classes).
- Positive answer: $\exists N \gg 0$ and $S \subset M$ such that [S] = N a.

Schwartzman and Ruelle-...

Solenoids

Realization of real . . .

Conjecture

Other relevant and related situations:

- 1. Existence of symplectic submanifolds in a symplectic manifold (M, ω) Donaldson, 1994.
- 2. Pseudo-holomorphic curves $(S, j) \subset (M, \omega, J)$ in almost-Kähler manifolds Gromov, 1985.
- 3. Embeddings of manifolds (smooth, symplectic, Riemannian, Kähler, etc.), $S \hookrightarrow M$.

◀	
••	••

Full Screen

Close

Quit

Schwartzman and Ruelle-...

Solenoids

Realization of real . . .

Conjecture

Full Screen

Close

Quit

Hodge Conjecture: (First version)

M compact Kähler manifold. $a \in H^{p,p}(M) \cap H^{2p}(M, \mathbb{Z}).$ Does there exist $S \subset M$ complex submanifold, s.t. PD[S] = a?

As stated, it is false:

- Counterexample with torsion classes (Grothendieck).
- Counterexample for M Kähler: some non-algebraic complex tori (Zucker).

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Image: Constraint of the second sec

Full	Screen	

Close

Quit

Hodge Conjecture: (First version)

M compact Kähler manifold. $a \in H^{p,p}(M) \cap H^{2p}(M, \mathbb{Z}).$ Does there exist $S \subset M$ complex submanifold, s.t. PD[S] = a?

As stated, it is false:

- Counterexample with torsion classes (Grothendieck).
- Counterexample for *M* Kähler: some non-algebraic complex tori (Zucker).

Hodge Conjecture: (Current version)

 (M, J, Ω) compact projective manifold (i.e. $[\Omega] \in H^2(M, \mathbb{Z})$). $a \in H^{p,p}(M) \cap H^{2p}(M, \mathbb{Z})$. Does there exist $N \gg 0, S \subset M$ complex submanifold, s.t. PD[S] = N a?

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Geometric representatives of non-integer homology classes:

M smooth compact manifold.

 $a \in H_k(M, \mathbb{R})$ real homology class.

We look for geometric representatives of a.

An oriented submanifold $S \subset M$ represents an integer homology class $[S] \in H_k(M, \mathbb{Z})$ as follows. By duality,

 $[S]: H^k(M) \longrightarrow \mathbb{R}$

assigns to $\omega \in \Omega^k(M)$,

$$\langle [S], \omega \rangle = \int_S \omega \; .$$

We aim for a (smooth) sub-object $S \hookrightarrow M$ defining an integration current s.t. [S] = a.

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

•		
••	••	

Full Screen

Close

Quit

2. Schwartzman and Ruelle-Sullivan cycles

Schwartzman 1-dimensional cycles

Schwartzman (1957) defined, for k = 1, real cycles as follows.

M smooth compact manifold. A smooth parametrized curve

 $c: \mathbb{R} \to M$

defines by duality a Schwartzman 1-cycle

 $[c] \in H_1(M, \mathbb{R})$

if for any 1-form $\omega \in \Omega^1(M)$, the limit

$$\langle [c], \omega \rangle = \lim_{\substack{t \to +\infty \\ s \to -\infty}} \frac{1}{t-s} \int_{s}^{t} c^{*} \omega$$

always exists.

(This corresponds to integrating along c([s,t]), normalizing, and then taking the limit.)

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Full Screen
Close

Quit

Alternative (equivalent) definition

By compactness of M, for each pair of points $p, q \in M$ we can choose a rectifiable arc $\gamma_{p,q}$ so that for a Riemannian metric on M, the paths $(\gamma_{p,q})$ have uniformly bounded length.

The loop

$$c_{s,t} := c([s,t]) * \gamma_{c(t),c(s)}$$

defines a homology class $[c_{s,t}] \in H_1(M, \mathbb{Z})$. Then c defines a Schwartzman 1-cycle

$$[c] \in H_1(M, \mathbb{R}) = \mathbb{R} \otimes H_1(M, \mathbb{Z})$$

if the limit

$$[c] = \lim_{\substack{t \to +\infty \\ s \to -\infty}} \frac{[c_{s,t}]}{t-s}$$

exists.

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

◀		
••	••	
		l

Full Screen

Close	
Quit	

Schwartzman k-dimensional cycles

We can extend the definition to higher dimensions k > 1. M smooth compact manifold.

S smooth (Riemannian) complete non-compact manifold, $x_0 \in S$.

A smooth map $f:S \to M$ defines a Schwartzman k-cycle

 $[f] \in H_k(M, \mathbb{R})$

if for any k-form $\omega \in \Omega^k(M)$, the limit

$$[f],\omega\rangle = \lim_{R \to +\infty} \frac{1}{\operatorname{Vol}_S(B_R(x_0))} \int_{B_R(x_0)} f^*\omega$$

exists, where $B_R(x_0)$ is the ball of radius R around x_0 in S.

If we can cap off the submanifolds with boundary $f(B_R(x_0))$ with a small cap C_R , $S_R = f(B_R(x_0)) \cup C_R$, then we can alternatively define $[f] = \lim_{R \to +\infty} \frac{[S_R]}{\operatorname{Vol}_S(B_R(x_0))} \in H_k(M, \mathbb{R}).$

This happens, for instance, when there is a trapping region, that is, a ball $B \subset M$, and a sequence $R_n \to +\infty$, s.t. $f(\partial B_{R_n}(x_0)) \subset B$.

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Close

Quit

Ruelle-Sullivan cycles

Ruelle and Sullivan (1975) introduced the following type of currents.

Let $S \subset M$ be a foliated compact subset of M, i.e. locally there are flow-boxes $U \subset M$ s.t. $U \cap S \cong D^k \times K(U)$, where $L_y = D^k \times \{y\}$ are horizontal k-disks and K(U) is the transversal.

Assume that

- S has continuously oriented leaves.
- S has a transversal measure $\mu_{K(U)}$ for each transversal K(U), which is invariant by holonomy.

Schwartzman and Ruelle-...

Solenoids

Realization of real . . .

Conjecture

Then there is an element

$$[S_{\mu}] \in H_k(M, \mathbb{R})$$

defined by duality. Fix a covering (U_i) of S, with $U_i \cap S = D^k \times K(U_i)$, (ρ_i) a partition of unity subordinated to (U_i) . For $\omega \in \Omega^k(M)$, define

$$\langle [S_{\mu}], \omega
angle = \sum_{i} \int_{K(U_{i})} \left(\int_{L_{y}} \rho_{i} \omega
ight) d\mu_{K(U_{i})}(y) \, .$$

Full Screen

Close

Quit

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

+
+
+

Full Screen

Close

Quit

Then there is an element

 $[S_{\mu}] \in H_k(M, \mathbb{R})$

defined by duality. Fix a covering (U_i) of S, with $U_i \cap S = D^k \times K(U_i)$, (ρ_i) a partition of unity subordinated to (U_i) . For $\omega \in \Omega^k(M)$, define

$$[S_{\mu}], \omega \rangle = \sum_{i} \int_{K(U_{i})} \left(\int_{L_{y}} \rho_{i} \omega \right) d\mu_{K(U_{i})}(y) \,.$$

Lemma: If S does not have compact leaves, then $[S_{\mu}]^2 = 0$.

Problems to solve:

(A) Can't represent all real homology classes in this way.(B) Relationship between Schwartzman and Ruelle-Sullivan cycles.

(A) is solved by using immersed (instead of embedded) solenoids.

(B) requires solenoids whose transversal measure μ has good properties (unique ergodicity).

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Full Screen

Close

Quit

3. Solenoids

Definition: A k-solenoid S is a compact Hausdorff topological space with an atlas of flow-boxes (U_i) such that

 $U_i \cong D^k \times K(U_i)$.

The (local) leaves are $L_y = D^k \times \{y\}$. The (local) transversals are $K(U_i)$.

A (transversal) measure for a k-solenoid is a collection of measures $\mu = (\mu_T)$ for all transversals T such that μ_{T_1} and μ_{T_2} agree under any holonomy map $h: T_1 \to T_2$.

A measured solenoid S_{μ} is a solenoid endowed with a transversal measure.

A solenoid is oriented if each leaf is an oriented manifold and there is a collection of flow-boxes preserving the leaf-wise orientation.

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

 Image: Full Screen

Close

Quit

Homology class represented by a solenoid

M a smooth manifold.

 S_{μ} a measured, oriented k-solenoid.

An immersion $f: S \to M$ is a globally smooth map which is an immersion for each leaf.

Then (S_{μ}, f) defines a real homology class

 $[S_{\mu}, f] \in H_k(M, \mathbb{R})$

by duality as follows. Fix a covering (U_i) of S by flow-boxes and a partition of unity (ρ_i) subordinated to (U_i) . For $\omega \in \Omega^k(M)$, let

$$\langle [S_{\mu}, f], \omega \rangle = \sum_{i} \int_{K(U_{i})} \left(\int_{L_{y}} \rho_{i} f^{*} \omega \right) d\mu_{K(U_{i})}(y)$$

We call $[S_{\mu}, f]$ the generalized Ruelle-Sullivan class associated to the solenoid.

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

••	••	
Full S	Screen	

Quit

Ergodic solenoids

A k-solenoid S is uniquely ergodic if:

- S admits a unique (up to positive scalar multiples) transversal measure μ .
- Supp $\mu = S$.

If we endow S with a Riemannian metric (hence a k-volume along leaves) then μ can be normalized to give total volume 1 to the whole solenoid.

For a uniquely ergodic solenoid, S "contains" as much information as the measured solenoid S_{μ} .

If S is uniquely ergodic, then S_{μ} is ergodic: that is, for any transversal T and any $A \subset T$ invariant by holonomy,

either $\mu_T(A) = 0$ or $\mu_T(T - A) = 0$.

If S is uniquely ergodic, then S is minimal (all leaves are dense). In particular, any transversal cuts all leaves.

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Close

Quit

Theorem: Let S be a uniquely ergodic oriented k-solenoid, and let $f: S \to M$ be an immersion. (If k > 1 we assume that there is a trapping region.) Then for each leaf $l \subset S$ we have that $f|_l$ is a Schwartzman k-cycle, and

 $[f|_l] = [S_\mu, f] \in H_k(M, \mathbb{R}).$

<u>Proof</u>: This is an application of Birkhoff's ergodic theorem.

Assume for simplicity k = 1, so the leaf l is an (arc-length) parametrized curve $c : \mathbb{R} \to S$.

Choose a small local transversal T.

 $R_T: T \to T$, Poincaré first return map.

Schwartzman and Ruelle- . .

Solenoids

Realization of real . . .

Conjecture

◀	
••	••

Full Screen

Close

Quit

 $\varphi_T : T \to H_1(M, \mathbb{Z})$ $\varphi_T(x) = \left[f([x, R_T(x)]) \text{*short segment} \right] \in H_1(M, \mathbb{Z}).$ $l_T : T \to \mathbb{R}_+, \ l_T(x) = \text{length of } [x, R_T(x)].$

Fix $x_0 \in T$. Let $x_i = R_T^i(x_0)$ with corresponding time t_i . Hence $t_{i+1} - t_i = l_T(x_i)$.

Therefore

$$t_n = \sum_{i=0}^{n-1} (t_{i+1} - t_i) = \sum_{i=0}^{n-1} l_T(R_T^i(x_0)).$$

By Birkhoff's ergodic theorem,

$$\lim_{n \to +\infty} \frac{1}{n} t_n = \int_T l_T(x) \ d\mu_T(x) = \mu(S) = 1.$$
 (1)

Also

$$[f \circ c_{0,t_n}] = [f \circ c_{0,t_1}] + [f \circ c_{t_1,t_2}] + \ldots + [f \circ c_{t_{n-1},t_n}]$$

= $\varphi_T(x_0) + \varphi_T(R_T(x_0)) + \ldots + \varphi_T(R_T^{n-1}(x_0)).$

By Birkhoff's ergodic theorem,

$$\lim_{n \to +\infty} \frac{1}{n} [f \circ c_{0,t_n}] = \int_T \varphi_T(x) \ d\mu_T(x) \in H_1(M,\mathbb{R}).$$
 (2)

Schwartzman and Ruelle- . .

Solenoids

Realization of real . . .

Conjecture

 + +<	
Full Screen	
Close	
Quit	
Quit	

Now put together (1) and (2).

The Schwartzman class is^(*) $[f|_l] = \lim_{n \to +\infty} \frac{[f \circ c_{0,t_n}]}{t_n} = \lim_{n \to +\infty} \frac{[f \circ c_{0,t_n}]/n}{t_n/n} = \int_T \varphi_T(x) \ d\mu_T(x) \ .$

The generalized Ruelle-Sullivan class is

$$\langle [S_{\mu}, f], \omega \rangle = \int_{T} \left(\int_{[x, R_{T}(x)]} f^{*} \omega \right) d\mu_{T}(x) = \int_{T} \langle \varphi_{T}(x), \omega \rangle d\mu_{T}(x) ,$$

for $\omega \in \Omega^1(M)$. So

$$[S_{\mu}, f] = \int_{T} \varphi_T(x) \, d\mu_T(x) \, .$$

(*) (Observe that we took $t \to \infty$. We can also take $s \to -\infty$ in a similar way.)

Introduction	

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

 4
 >

 44
 >>

Full Screen	
Close	

Quit

4. Realization of real homology classes

Theorem: Let M be a compact smooth manifold, $a \in H_k(M, \mathbb{R})$. Then there exists a uniquely ergodic oriented immersed solenoid (S, f) representing a. (If k > 1 then S has a trapping region.)

<u>Proof</u>: Assume k = 1 for simplicity.

We shall use a solenoid with a transversal $T \subset S^1$.

Fact: the rotation $r_{\theta} : S^1 \to S^1$ of irrational angle θ is uniquely ergodic.

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

◀	►
••	••

Full Screen
Close

Quit

Denjoy example: there is a map $h: S^1 \to S^1$ with the following properties:

- h is of class $C^{2-\epsilon}$.
- h leaves invariant a Cantor set $K \subset S^1$.
- h has rotation angle θ , i.e. $r_{\theta}^{n}(x) = x + n \theta$ $h^{n}(x) = x + n \theta + o(n).$
- h is uniquely ergodic, with a unique invariant measure μ_K supported exactly on K.

The suspension Σ_h of the map $h|_K : K \to K$ is:

Schwartzman and Ruelle-...

Solenoids

Realization of real . . .

Conjecture

+
+
+

Full Screen

Close

Quit

Take loops $C_1, \ldots, C_{b_1} \subset M$ which form a basis of $H_1(M, \mathbb{Z})$. There are real numbers $\lambda_1, \ldots, \lambda_r > 0$ such that

$$a = \lambda_1 C_1 + \dots + \lambda_r C_r$$

(switching orientations and reordering the cycles if necessary). By dividing by $\sum \lambda_i$, we can assume that $\sum \lambda_i = 1$.

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Full Screen

Close

Quit

Take loops $C_1, \ldots, C_{b_1} \subset M$ which form a basis of $H_1(M, \mathbb{Z})$. There are real numbers $\lambda_1, \ldots, \lambda_r > 0$ such that

 $a = \lambda_1 C_1 + \dots + \lambda_r C_r$

(switching orientations and reordering the cycles if necessary). By dividing by $\sum \lambda_i$, we can assume that $\sum \lambda_i = 1$.

For the moment, assume dim $M \geq 3$.

Embed $S^1 \times [0,1] \subset B$ a ball in M.

Partition the cantor set K into r disjoint compact subsets K_1, \ldots, K_r in cyclic order, each of which with

$$\mu_K(K_i) = \lambda_i \, .$$

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Full Screen

Close

Quit

Put the middle part of Σ_h inside the ball *B*. From the boundaries, take bands $[0,1] \times K_i$ s.t. each $[0,1] \times \{y\}$ is homotopic to C_i .

The resulting solenoid S is uniquely ergodic and, moreover, let us see that $[S_{\mu}, f] = a$. Let ω be any closed 1-form (we can assume that ω vanishes on B). Cover the solenoid by the central part $B \cap S$ together with the flow-boxes $[0, 1] \times K_i$, $i = 1, \ldots, r$. Then

$$[S_{\mu}, f], [\omega]\rangle = \sum_{i=1}^{r} \int_{K_{i}} \left(\int_{[0,1]} f^{*} \omega \right) d\mu_{K_{i}}(y) = \sum_{i=1}^{r} \int_{K_{i}} \langle C_{i}, [\omega] \rangle d\mu_{K_{i}}(y)$$
$$= \sum_{i=1}^{r} \langle C_{i}, [\omega] \rangle \mu(K_{i}) = \sum_{i=1}^{r} \lambda_{i} \langle C_{i}, [\omega] \rangle = \langle a, [\omega] \rangle,$$

proving that $[S_{\mu}, f] = a$.

(If dim M = 2, then we cut open $S^1 \times [0, 1]$ and flatten it out into a ball in M.)

Schwartzman and Ruelle-..

Solenoids

Realization of real . . .

Conjecture

Full Screen

Close

Quit

If k > 1 we should use submanifolds

 $C_i \subset M$

representing integer homology classes giving a basis of $H_k(M, \mathbb{Q}) = \mathbb{Q} \otimes H_k(M, \mathbb{Z})$, and a central part (the "mixing" locus) of the form

 $S^{k-1} \times S^1 \times [0,1] \subset B \subset M.$

Schwartzman and Ruelle- . .

Solenoids

Realization of real . . .

Conjecture

Full Screen

Close

Quit

5. Conjecture

Solenoidal Hodge Conjecture:

Let M be a compact Kähler manifold. $a \in H^{p,p}(M) \cap H^{2p}(M, \mathbb{R}).$ Then a is represented by a complex immersed solenoid.

<u>Comments</u>:

- This is a half of the Hodge Conjecture.
- It should hold disregarding the projectivity of the Kähler manifold (i.e. not requiring $[\Omega] \in H^2(M, \mathbb{Z})$).
- The conjecture holds for complex tori (using non-minimal complex solenoids).